Ynuk Bossé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364416/publications.pdf

Version: 2024-02-01

		361413	414414
71	1,215	20	32
papers	citations	h-index	g-index
71	71	71	1363
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mechanical properties of asthmatic airway smooth muscle. European Respiratory Journal, 2012, 40, 45-54.	6.7	86
2	Fibroblast Growth Factor 2 and Transforming Growth Factor \hat{I}^21 Synergism in Human Bronchial Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 746-753.	2.9	71
3	It's Not All Smooth Muscle: Non-Smooth-Muscle Elements in Control of Resistance to Airflow. Annual Review of Physiology, 2010, 72, 437-462.	13.1	65
4	Airway wall remodeling in asthma: From the epithelial layer to the adventitia. Current Allergy and Asthma Reports, 2008, 8, 357-366.	5. 3	63
5	CysLT1 Receptor Engagement Induces Activator Protein-1– and NF-κB–Dependent IL-8 Expression. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 697-704.	2.9	52
6	Length Adaptation of Airway Smooth Muscle. Proceedings of the American Thoracic Society, 2008, 5, 62-67.	3.5	50
7	Adaptation of Airway Smooth Muscle to Basal Tone. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 13-18.	2.9	48
8	Controversy surrounding the increased expression of TGF \hat{l}^21 in asthma. Respiratory Research, 2007, 8, 66.	3.6	43
9	Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. Respiratory Research, 2017, 18, 33.	3.6	42
10	FGF2 in asthmatic airway-smooth-muscle-cell hyperplasia. Trends in Molecular Medicine, 2008, 14, 3-11.	6.7	36
11	Airway contractility and remodeling: Links to asthma symptoms. Pulmonary Pharmacology and Therapeutics, 2013, 26, 3-12.	2.6	34
12	Comparison of eight 15-lipoxygenase (LO) inhibitors on the biosynthesis of 15-LO metabolites by human neutrophils and eosinophils. PLoS ONE, 2018, 13, e0202424.	2.5	34
13	Interleukin-4 and Interleukin-13 Enhance Human Bronchial Smooth Muscle Cell Proliferation. International Archives of Allergy and Immunology, 2008, 146, 138-148.	2.1	30
14	Chronic Activation in Shortened Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 341-348.	2.9	29
15	A â€~Good' muscle in a â€~Bad' environment: The importance of airway smooth muscle force adaptation t airway hyperresponsiveness. Respiratory Physiology and Neurobiology, 2011, 179, 269-275.	^{.0} 1.6	29
16	Signaling by the Cysteinyl-Leukotriene Receptor 2. Journal of Biological Chemistry, 2008, 283, 1974-1984.	3.4	27
17	Asthmatic airway hyperresponsiveness: the ants in the tree. Trends in Molecular Medicine, 2012, 18, 627-633.	6.7	25
18	Decrease of airway smooth muscle contractility induced by simulated breathing maneuvers is not simply proportional to strain. Journal of Applied Physiology, 2013, 114, 335-343.	2.5	22

#	Article	IF	CITATIONS
19	Endocrine regulation of airway contractility is overlooked. Journal of Endocrinology, 2014, 222, R61-R73.	2.6	22
20	Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Scientific Reports, 2021, 11, 7777.	3.3	22
21	Repeated airway constrictions in mice do not alter respiratory function. Journal of Applied Physiology, 2018, 124, 1483-1490.	2.5	21
22	Lung CD200 Receptor Activation Abrogates Airway Hyperresponsiveness in Experimental Asthma. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 276-284.	2.9	20
23	Force Oscillations Simulating Breathing Maneuvers Do Not Prevent Force Adaptation. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 44-49.	2.9	19
24	Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle. Pulmonary Pharmacology and Therapeutics, 2009, 22, 407-416.	2.6	18
25	Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L277-L287.	2.9	18
26	Airway smooth muscle tone increases airway responsiveness in healthy young adults. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L348-L357.	2.9	18
27	The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness. Expert Review of Respiratory Medicine, 2016, 10, 19-27.	2.5	16
28	Assessment of Respiratory Function in Conscious Mice by Double-chamber Plethysmography. Journal of Visualized Experiments, 2018, , .	0.3	15
29	Applications of oscillometry in clinical research and practice. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 54-68.	0.5	15
30	Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?. Journal of Applied Physiology, 2013, 115, 1304-1315.	2.5	14
31	FTY720 promotes pulmonary fibrosis when administered during the remodelling phase following a bleomycin-induced lung injury. Pulmonary Pharmacology and Therapeutics, 2017, 44, 50-56.	2.6	14
32	Smooth Muscle in the Maintenance of Increased Airway Resistance Elicited by Methacholine in Humans. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 879-885.	5.6	13
33	Smooth muscle in human bronchi is disposed to resist airway distension. Respiratory Physiology and Neurobiology, 2016, 229, 51-58.	1.6	13
34	Leukotriene D ₄ Up-Regulates Furin Expression through CysLT1 Receptor Signaling. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 227-234.	2.9	11
35	The gain of smooth muscle's contractile capacity induced by tone on in vivo airway responsiveness in mice. Journal of Applied Physiology, 2015, 118, 692-698.	2.5	11
36	Treatment with a sphingosine analog after the inception of house dust mite-induced airway inflammation alleviates key features of experimental asthma. Respiratory Research, 2015, 16, 7.	3.6	11

#	Article	IF	Citations
37	An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respiratory Physiology and Neurobiology, 2017, 243, 13-19.	1.6	11
38	Cysteinyl-leukotrienes in asthmatic airway smooth muscle cell hyperplasia. Annals of Allergy, Asthma and Immunology, 2009, 102, 16-21.	1.0	10
39	Bronchoprotective effect of simulated deep inspirations in tracheal smooth muscle. Journal of Applied Physiology, 2014, 117, 1502-1513.	2.5	10
40	Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L442-L451.	2.9	8
41	A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Frontiers in Pharmacology, 2017, 8, 78.	3.5	7
42	Assessment of Airway Distensibility by the Forced Oscillation Technique: Reproducible and Potentially Simplifiable. Frontiers in Physiology, 2017, 8, 223.	2.8	7
43	The underlying physiological mechanisms whereby anticholinergics alleviate asthma. Canadian Journal of Physiology and Pharmacology, 2018, 96, 433-441.	1.4	7
44	Effects of airway smooth muscle contraction and inflammation on lung tissue compliance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L294-L304.	2.9	7
45	The Contractile Properties of Airway Smooth Muscle: How their Defects can be Linked to Asthmatic Airway Hyperresponsiveness?. Current Respiratory Medicine Reviews, 2013, 9, 42-68.	0.2	6
46	Targeting Single Molecules in Asthma Benefits Few. Trends in Molecular Medicine, 2016, 22, 935-945.	6.7	6
47	Interval between simulated deep inspirations on the dynamics of airway smooth muscle contraction in guinea pig bronchi. Respiratory Physiology and Neurobiology, 2019, 259, 136-142.	1.6	5
48	Airway smooth muscle adapting in dynamic conditions is refractory to the bronchodilator effect of a deep inspiration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L452-L458.	2.9	5
49	Smooth muscle in abnormal airways. Current Opinion in Physiology, 2021, 21, 1-8.	1.8	5
50	Airway Smooth Muscle Responsiveness: The Origin of Airway Hyperresponsiveness in Asthma?. Current Respiratory Medicine Reviews, 2011, 7, 289-301.	0.2	4
51	CD34 Differentially Regulates Contractile and Noncontractile Elements of Airway Reactivity. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 79-88.	2.9	4
52	Asthma: An Untoward Consequence of Endurance Sports?. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 7-8.	2.9	4
53	Smooth Muscle Hypercontractility in Airway Hyperresponsiveness: Innate, Acquired, or Nonexistent?. Journal of Allergy, 2013, 2013, 1-4.	0.7	3
54	Impact of immunization against OxLDL on the pulmonary response to cigarette smoke exposure in mice. Respiratory Research, 2018, 19, 131.	3.6	3

#	Article	IF	Citations
55	CD34 regulates the skeletal muscle response to hypoxia. Journal of Muscle Research and Cell Motility, 2019, 40, 309-318.	2.0	3
56	The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, 0108021-1080221.	0.5	3
57	Flexibility of microstructural adaptions in airway smooth muscle. Journal of Applied Physiology, 2021, 130, 1555-1561.	2.5	3
58	Airway Hyperresponsiveness in Asthma: A Better Understanding Yet to Yield Clinical Benefit. Journal of Allergy & Therapy, 0, 2, .	0.1	3
59	In mice of both sexes, repeated contractions of smooth muscle in vivo greatly enhance the response of peripheral airways to methacholine. Respiratory Physiology and Neurobiology, 2022, 304, 103938.	1.6	3
60	Comments on Point:Counterpoint: Alterations in airway smooth muscle phenotype do/do not cause airway hyperresponsiveness in asthma. Journal of Applied Physiology, 2012, 113, 844-846.	2.5	2
61	The presumptive physiological significance of length adaptation was heretofore compelling at least for a human mind. Journal of Applied Physiology, 2015, 118, 507-508.	2.5	2
62	Shortening of airway smooth muscle is modulated by prolonging the time without simulated deep inspirations in ovine tracheal strips. Journal of Applied Physiology, 2019, 127, 1528-1538.	2.5	2
63	Is asthma only an airways disorder?. Respirology, 2020, 25, 568-569.	2.3	2
64	Sensitive physiological readouts to evaluate countermeasures for lipopolysaccharide-induced lung alterations in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L107-L120.	2.9	2
65	Extracellular regulation of airway smooth muscle contraction. International Journal of Biochemistry and Cell Biology, 2019, 112, 1-7.	2.8	1
66	Ultrastructural Quantification Of Asthmatic Airway Smooth Muscle Cells., 2010,,.		0
67	Passive Stiffness Of Airway Smooth Muscle Increases Following An Initial Decline Caused By Length Reduction. , 2010, , .		0
68	Adaptation To Increased Airway Smooth Muscle-Tone Increases Airway Responsiveness In Healthy Subjects. , 2011, , .		0
69	The Contribution Of Airway Smooth Muscle-Force Adaptation In Airway Narrowing And Laminar Airflow Resistance Predicted By A Computational Model. , $2011,\ldots$		0
70	Force Oscillations Simulating Breathing Do Not Prevent Force Adaptation. , 2012, , .		0
71	Length-Dependency Of Spasmogen-Induced Airway Smooth Muscle-Force: Potential Contribution To Airway Hyperresponsiveness In Remodeled Asthmatic Airways. , 2012, , .		0