Yota Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364340/publications.pdf

Version: 2024-02-01

414414 471509 1,151 41 17 32 citations h-index g-index papers 43 43 43 1372 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Histone variant H2A.Z plays multiple roles in the maintenance of heterochromatin integrity. Genes To Cells, 2022, 27, 93-112.	1.2	4
2	Construction and characterization of a zincâ€inducible gene expression vector in fission yeast. Yeast, 2021, 38, 251-261.	1.7	O
3	Trimethylguanosine synthase 1 (Tgs1) is involved in Swi6/HP1â€independent siRNA production and establishment of heterochromatin in fission yeast. Genes To Cells, 2021, 26, 203-218.	1.2	3
4	Two secured FACT recruitment mechanisms are essential for heterochromatin maintenance. Cell Reports, 2021, 36, 109540.	6.4	13
5	Nonmuscle myosin IIA and IIB differently suppress microtubule growth to stabilize cell morphology. Journal of Biochemistry, 2020, 167, 25-39.	1.7	4
6	Unprogrammed epigenetic variation mediated by stochastic formation of ectopic heterochromatin. Current Genetics, 2020, 66, 319-325.	1.7	2
7	Epigenetic regulation affects gene amplification in Drosophila development. Frontiers in Bioscience - Landmark, 2020, 25, 632-645.	3.0	4
8	Phosphorylation of repressive histone code readers by casein kinase 2 plays diverse roles in heterochromatin regulation. Journal of Biochemistry, 2019, 166, 3-6.	1.7	7
9	Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1. PLoS Genetics, 2019, 15, e1008129.	3 . 5	23
10	Differential contributions of nonmuscle myosin IIA and IIB to cytokinesis in human immortalized fibroblasts. Experimental Cell Research, 2019, 376, 67-76.	2.6	19
11	Complete Genome Sequence of Staphylococcus arlettae Strain P2, Isolated from a Laboratory Environment. Microbiology Resource Announcements, 2019, 8, .	0.6	5
12	Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Communications Biology, 2019, 2, 17.	4.4	24
13	Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts. Biochemical and Biophysical Research Communications, 2018, 498, 25-31.	2.1	7
14	Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Molecular Biology of the Cell, 2018, 29, 911-922.	2.1	26
15	DNA replication nbsp machinery is required for development in nbsp i Drosophila i. Frontiers in Bioscience - Landmark, 2018, 23, 493-505.	3.0	5
16	RNAi-dependent heterochromatin assembly in fission yeast Schizosaccharomyces pombe requires heat-shock molecular chaperones Hsp90 and Mas5. Epigenetics and Chromatin, 2018, 11, 26.	3.9	11
17	Sfh1, an essential component of the <scp>RSC</scp> chromatin remodeling complex, maintains genome integrity in fission yeast. Genes To Cells, 2018, 23, 738-752.	1.2	5
18	DNA replication machinery contributes to development of eye in i Drosophila i. Frontiers in Bioscience - Landmark, 2018, 23, 506-511.	3.0	2

#	Article	IF	Citations
19	Semi-retentive cytoskeletal fractionation (SERCYF): A novel method for the biochemical analysis of the organization of microtubule and actin cytoskeleton networks. Biochemical and Biophysical Research Communications, 2017, 488, 614-620.	2.1	4
20	Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11208-E11217.	7.1	13
21	H3K36 methylation state and associated silencing mechanisms. Transcription, 2017, 8, 26-31.	3.1	12
22	Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes To Cells, 2016, 21, 812-832.	1.2	44
23	Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Research, 2016, 44, 4147-4162.	14.5	44
24	A novel method for purification of the endogenously expressed fission yeast Set2 complex. Protein Expression and Purification, 2014, 97, 44-49.	1.3	2
25	Histone deacetylases govern heterochromatin in every phase. EMBO Journal, 2013, 32, 2301-2303.	7.8	12
26	Mediator Directs Co-transcriptional Heterochromatin Assembly by RNA Interference-Dependent and -Independent Pathways. PLoS Genetics, 2013, 9, e1003677.	3.5	28
27	Spt6 prevents transcription-coupled loss of posttranslationally modified histone H3. Scientific Reports, 2013, 3, 2186.	3.3	52
28	Heterochromatin protein 1 homologue Swi6 acts in concert with Ers1 to regulate RNAi-directed heterochromatin assembly. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6159-6164.	7.1	30
29	A novel RNAi protein, Dsh1, assembles RNAi machinery on chromatin to amplify heterochromatic siRNA. Genes and Development, 2012, 26, 1811-1824.	5.9	22
30	Ran and Calcineurin Can Participate Collaboratively in the Regulation of Spermatogenesis in Scallop. Marine Biotechnology, 2012, 14, 479-490.	2.4	4
31	DNA–RNA hybrid formation mediates RNAiâ€directed heterochromatin formation. Genes To Cells, 2012, 17, 218-233.	1.2	94
32	Roles of the C-terminal residues of calmodulin in structure and function. Biophysics (Nagoya-shi,) Tj ETQq0 0 0 rg	zBT/Qverlo	ock 10 Tf 50 2
33	Phosphorylation of Swi6/HP1 regulates transcriptional gene silencing at heterochromatin. Genes and Development, 2009, 23, 18-23.	5.9	61
34	Fission yeast chromatin assembly factor 1 assists in the replicationâ€coupled maintenance of heterochromatin. Genes To Cells, 2008, 13, 1027-1043.	1.2	41
35	Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. Journal of Cellular Biochemistry, 2007, 100, 1313-1323.	2.6	13
36	Transcription factors and DNA replication origin selection. BioEssays, 2005, 27, 1107-1116.	2.5	56

#	Article	IF	CITATION
37	RNA Polymerase II Is Required for RNAi-Dependent Heterochromatin Assembly. Science, 2005, 309, 467-469.	12.6	258
38	Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes and Development, 2002, 16, 1766-1778.	5.9	97
39	Block of granulocytic differentiation of 32Dcl3 cells by AML1/ETO(MTG8) but not by highly expressed Bcl-2. Oncogene, 1999, 18, 4055-4062.	5.9	36
40	Context-Dependent Modulation of Replication Activity of <i>Saccharomyces cerevisiae</i> Autonomously Replicating Sequences by Transcription Factors. Molecular and Cellular Biology, 1999, 19, 7428-7435.	2.3	18
41	The Capacity of Polyomavirus Enhancer Binding Protein 2αB (AML1/Cbfa2) To Stimulate Polyomavirus DNA Replication Is Related to Its Affinity for the Nuclear Matrix. Molecular and Cellular Biology, 1998, 18, 4165-4176.	2.3	40