List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3364276/publications.pdf Version: 2024-02-01

LUIS P. DOMINCO

#	Article	IF	CITATIONS
1	Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. Journal of Organic Chemistry, 2008, 73, 4615-4624.	1.7	846
2	Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 2002, 58, 4417-4423.	1.0	832
3	Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 2016, 21, 748.	1.7	795
4	Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances, 2013, 3, 1486-1494.	1.7	628
5	A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Advances, 2014, 4, 32415-32428.	1.7	473
6	The nucleophilicity N index in organic chemistry. Organic and Biomolecular Chemistry, 2011, 9, 7168.	1.5	449
7	Understanding the mechanism of polar Diels–Alder reactions. Organic and Biomolecular Chemistry, 2009, 7, 3576.	1.5	427
8	A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. Computational and Theoretical Chemistry, 2008, 865, 68-72.	1.5	367
9	Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Dielsâ^'Alder Reactions. Journal of Physical Chemistry A, 2002, 106, 6871-6875.	1.1	357
10	Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules, 2016, 21, 1319.	1.7	324
11	Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 2003, 59, 3117-3125.	1.0	301
12	Understanding the Participation of Quadricyclane as Nucleophile in Polar [2σ + 2σ + 2π] Cycloadditions toward Electrophilic π Molecules. Journal of Organic Chemistry, 2008, 73, 8791-8799.	1.7	220
13	A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. Computational and Theoretical Chemistry, 2009, 895, 86-91.	1.5	199
14	New Highly Asymmetric Henry Reaction Catalyzed by Cu ^{II} and a <i>C</i> ₁ ‧ymmetric Aminopyridine Ligand, and Its Application to the Synthesis of Miconazole. Chemistry - A European Journal, 2008, 14, 4725-4730.	1.7	177
15	Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. European Journal of Organic Chemistry, 2019, 2019, 267-282.	1.2	171
16	Understanding Reaction Mechanisms in Organic Chemistry from Catastrophe Theory Applied to the Electron Localization Function Topology. Journal of Physical Chemistry A, 2008, 112, 7128-7136.	1.1	165
17	A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron, 2004, 60, 11503-11509.	1.0	150
18	The Joint Use of Catastrophe Theory and Electron Localization Function to Characterize Molecular Mechanisms. A Density Functional Study of the Dielsâ^'Alder Reaction between Ethylene and 1,3-Butadiene. Journal of Physical Chemistry A, 2003, 107, 6014-6024.	1.1	149

#	Article	IF	CITATIONS
19	Influence of Reactant Polarity on the Course of the Inverse-Electron-Demand Dielsâ ⁻ Alder Reaction. A DFT Study of Regio- and Stereoselectivity, Presence of Lewis Acid Catalyst, and Inclusion of Solvent Effects in the Reaction between Nitroethene and Substituted Ethenes. Journal of Organic Chemistry, 1999, 64, 5867-5875.	1.7	136
20	Global and local reactivity indices for electrophilic/nucleophilic free radicals. Organic and Biomolecular Chemistry, 2013, 11, 4350.	1.5	136
21	New Findings on the Dielsâ^'Alder Reactions. An Analysis Based on the Bonding Evolution Theory. Journal of Physical Chemistry A, 2006, 110, 13939-13947.	1.1	128
22	Understanding the High Reactivity of the Azomethine Ylides in [3 + 2] Cycloaddition Reactions. Letters in Organic Chemistry, 2010, 7, 432-439.	0.2	127
23	Origin of the Synchronicity on the Transition Structures of Polar Dielsâ^'Alder Reactions. Are These Reactions [4 + 2] Processes?. Journal of Organic Chemistry, 2003, 68, 3884-3890.	1.7	119
24	On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chemical Physics Letters, 2013, 582, 141-143.	1.2	116
25	A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3 + 2] Cycloaddition Reactions of <i>C</i> , <i>N</i> -Dialkyl Nitrones with Ethylene Derivatives. Journal of Organic Chemistry, 2018, 83, 2182-2197.	1.7	102
26	Chapter 9 The electrophilicity index in organic chemistry. Theoretical and Computational Chemistry, 2007, , 139-201.	0.2	101
27	An Understanding of the Electrophilic/Nucleophilic Behavior of Electro-Deficient 2,3-Disubstituted 1,3-Butadienes in Polar Dielsâ^'Alder Reactions. A Density Functional Theory Study. Journal of Physical Chemistry A, 2008, 112, 4046-4053.	1.1	100
28	Understanding the mechanisms of [3+2] cycloaddition reactions. The pseudoradical versus the zwitterionic mechanism. Tetrahedron, 2014, 70, 1267-1273.	1.0	95
29	A molecular electron density theory study of the participation of tetrazines in aza-Diels–Alder reactions. RSC Advances, 2020, 10, 15394-15405.	1.7	94
30	Density functional theory study of the mechanism of the proline-catalyzed intermolecular aldol reaction. Theoretical Chemistry Accounts, 2002, 108, 232-239.	0.5	93
31	Toward an Understanding of the Unexpected Regioselective Hetero-Dielsâ Alder Reactions of Asymmetric Tetrazines with Electron-Rich Ethylenes: A DFT Study. Journal of Organic Chemistry, 2009, 74, 2726-2735.	1.7	92
32	Enhancing Reactivity of Carbonyl Compounds via Hydrogen-Bond Formation. A DFT Study of the Hetero-Dielsâ^'Alder Reaction between Butadiene Derivative and Acetone in Chloroform. Journal of Organic Chemistry, 2003, 68, 8662-8668.	1.7	91
33	Understanding the Electronic Reorganization along the Nonpolar [3 + 2] Cycloaddition Reactions of Carbonyl Ylides Journal of Organic Chemistry, 2011, 76, 373-379.	1.7	89
34	Understanding the mechanism of non-polar Diels–Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Organic and Biomolecular Chemistry, 2010, 8, 5495.	1.5	85
35	Density Functional Theory Study of the Cycloaddition Reaction of Furan Derivatives with Maskedo-Benzoquinones. Does the Furan Act as a Dienophile in the Cycloaddition Reaction?. Journal of Organic Chemistry, 2002, 67, 959-965.	1.7	84
36	Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 2004, 60, 6585-6591.	1.0	84

#	Article	IF	CITATIONS
37	A density functional theory study for the Diels–Alder reaction between N-acyl-1-aza-1,3-butadienes and vinylamines. Lewis acid catalyst and solvent effects. Tetrahedron, 2002, 58, 3765-3774.	1.0	81
38	Electronic Contributions to the σpParameter of the Hammett Equation. Journal of Organic Chemistry, 2003, 68, 6060-6062.	1.7	80
39	Describing the Molecular Mechanism of Organic Reactions by Using Topological Analysis of Electronic Localization Function. Current Organic Chemistry, 2011, 15, 3566-3575.	0.9	79
40	Understanding the kinetic solvent effects on the 1,3â€dipolar cycloaddition of benzonitrile Nâ€oxide: a DFT study. Journal of Physical Organic Chemistry, 2011, 24, 611-618.	0.9	79
41	Density Functional Theory Study for the Cycloaddition of 1,3-Butadienes with Dimethyl Acetylenedicarboxylate. Polar Stepwise vs Concerted Mechanisms. Journal of Physical Chemistry A, 2002, 106, 952-961.	1.1	77
42	A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules, 2017, 22, 750.	1.7	76
43	Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. Journal of Organic Chemistry, 1999, 64, 3922-3929.	1.7	71
44	An Analysis of the Regioselectivity of 1,3â€Dipolar Cycloaddition Reactions of Benzonitrile <i>N</i> â€Oxides Based on Global and Local Electrophilicity and Nucleophilicity Indices. European Journal of Organic Chemistry, 2009, 2009, 3036-3044.	1.2	71
45	The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. European Journal of Organic Chemistry, 2018, 2018, 1107-1120.	1.2	69
46	Understanding local electrophilicity/nucleophilicity activation through a single reactivity difference index. Organic and Biomolecular Chemistry, 2012, 10, 2855.	1.5	68
47	A DFT analysis of the participation of zwitterionic TACs in polar [3+2] cycloaddition reactions. Tetrahedron, 2014, 70, 4519-4525.	1.0	68
48	Stereoselective 1,3-Dipolar Cycloadditions of a Chiral Nitrone Derived from Erythrulose. An Experimental and DFT Theoretical Study. Journal of Organic Chemistry, 2000, 65, 7000-7009.	1.7	67
49	Understanding the mechanism and regioselectivity of the copper(<scp>i</scp>) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Advances, 2018, 8, 7670-7678.	1.7	67
50	How does the global electron density transfer diminish activation energies in polar cycloaddition reactions? A Molecular Electron Density Theory study. Tetrahedron, 2017, 73, 1718-1724.	1.0	65
51	A DFT study of the Huisgen 1,3-dipolar cycloaddition between hindered thiocarbonyl ylides and tetracyanoethylene. Tetrahedron, 2004, 60, 5053-5058.	1.0	63
52	Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels–Alder reactions. Physical Chemistry Chemical Physics, 2014, 16, 6726.	1.3	62
53	A new model for Câ \in C bond formation processes derived from the Molecular Electron Density Theory in the study of the mechanism of [3+2] cycloaddition reactions of carbenoid nitrile ylides with electron-deficient ethylenes. Tetrahedron, 2016, 72, 1524-1532.	1.0	62
54	Toward an Understanding of Molecular Mechanism of Domino Cycloadditions. Density Functional Theory Study of the Reaction between Hexafluorobut-2-yne andN,Nâ€~-Dipyrrolylmethane. Journal of the American Chemical Society, 1998, 120, 1617-1618.	6.6	60

#	Article	IF	CITATIONS
55	Understanding the mechanism of the N-heterocyclic carbene-catalyzed ring-expansion of 4-formyl-β-lactams to succinimide derivatives. Tetrahedron, 2009, 65, 3432-3440.	1.0	59
56	A DFT study of the polar Diels–Alder reaction between 4-aza-6-nitrobenzofuroxan and cyclopentadiene. Tetrahedron, 2005, 61, 7359-7365.	1.0	57
57	1,3-Dipolar Cycloadditions of Electrophilically Activated Benzonitrile N-Oxides. Polar Cycloaddition versus Oxime Formation. Journal of Organic Chemistry, 2006, 71, 9319-9330.	1.7	56
58	Understanding the mechanism of stereoselective synthesis of cyclopentenes via N-heterocyclic carbene catalyzed reactions of enals with enones. Organic and Biomolecular Chemistry, 2010, 8, 4884.	1.5	56
59	Understanding the mechanism of the Povarov reaction. A DFT study. RSC Advances, 2014, 4, 25268.	1.7	54
60	Understanding the origin of the asynchronicity in bond-formation in polar cycloaddition reactions. A DFT study of the 1,3-dipolar cycloaddition reaction of carbonyl ylides with 1,2-benzoquinones. RSC Advances, 2012, 2, 1334-1342.	1.7	53
61	A bonding evolution theory study of the mechanism of [3+2] cycloaddition reactions of nitrones with electron-deficient ethylenes. RSC Advances, 2015, 5, 58464-58477.	1.7	53
62	Synthesis of (+)-podocarp-8(14)-en-13-one and methyl-(+)-13-oxo-podocarp-8(14)-en-18-oate from abietic acid. Tetrahedron, 1985, 41, 4937-4940.	1.0	52
63	Understanding the regioselectivity in hetero Diels–Alder reactions. AnÂELF analysis of the reaction between nitrosoethylene and 1-vinylpyrrolidine. Tetrahedron, 2013, 69, 107-114.	1.0	52
64	Theoretical Study of the Gas Phase Decomposition of Glycolic, Lactic, and 2-Hydroxyisobutyric Acids. Journal of the American Chemical Society, 1997, 119, 6415-6422.	6.6	51
65	A Theoretical Study of the Molecular Mechanism of the Reaction betweenN,N-Dimethylmethyleneammonium Cation and Cyclopentadiene. Journal of Organic Chemistry, 2001, 66, 3211-3214.	1.7	51
66	Origin of the synchronicity in bond formation in polar Diels–Alder reactions: an ELF analysis of the reaction between cyclopentadiene and tetracyanoethylene. Organic and Biomolecular Chemistry, 2012, 10, 3841.	1.5	51
67	Toward an Understanding of the Molecular Mechanism of the Reaction between 1-Methylpyrrole and Dimethyl Acetylenedicarboxylate. An ab Initio Study. Journal of Organic Chemistry, 1998, 63, 9183-9189.	1.7	50
68	Density functional theory study of the Lewis acid-catalyzed Diels-Alder reaction of nitroalkenes with vinyl ethers using aluminum derivatives. Journal of Physical Organic Chemistry, 2002, 15, 660-666.	0.9	50
69	Why do Electron-Deficient Dienes React Rapidly in Diels?Alder Reactions with Electron-Deficient Ethylenes? A Density Functional Theory Analysis. European Journal of Organic Chemistry, 2004, 2004, 4788-4793.	1.2	49
70	A Combined Experimental and Theoretical Study of the Polar [3 + 2] Cycloaddition of Electrophilically Activated Carbonyl Ylides with Aldehydes and Imines. Journal of Organic Chemistry, 2009, 74, 2120-2133.	1.7	49
71	Towards an intrinsic nucleofugality scale: The leaving group (LG) ability in CH3LG model system. Chemical Physics Letters, 2006, 420, 95-99.	1.2	48
72	Unveiling the Reactivity of Cyclic Azomethine Ylides in [3+2] Cycloaddition Reactions within the Molecular Electron Density Theory. European Journal of Organic Chemistry, 2020, 2020, 5938-5948.	1.2	48

#	Article	IF	CITATIONS
73	Nonlocal (Pair Site) Reactivity from Second-Order Static Density Response Function:  Gas- and Solution-Phase Reactivity of the Acetaldehyde Enolate as a Test Case. Journal of Physical Chemistry A, 1999, 103, 1367-1375.	1.1	46
74	Photoreaction between 2-Benzoylthiophene and Phenol or Indole. Journal of Organic Chemistry, 2003, 68, 5104-5113.	1.7	46
75	A comparative analysis of the electrophilicity of organic molecules between the computed IPs and EAs and the HOMO and LUMO energies. Chemical Physics Letters, 2007, 438, 341-345.	1.2	46
76	Understanding the cooperative NHC/LA catalysis for stereoselective annulation reactions with homoenolates. A DFT study. Organic and Biomolecular Chemistry, 2011, 9, 6616.	1.5	45
77	Why Do Five-Membered Heterocyclic Compounds Sometimes Not Participate in Polar Diels–Alder Reactions?. Journal of Organic Chemistry, 2013, 78, 2462-2471.	1.7	45
78	Theoretical Study of the Elimination Kinetics of Carboxylic Acid Derivatives in the Gas Phase. Decomposition of 2-Chloropropionic Acid. Journal of Physical Chemistry A, 1997, 101, 1859-1865.	1.1	44
79	Biosynthesis of the Brevianamides. Anab InitioStudy of the Biosynthetic Intramolecular Dielsâ^'Alder Cycloaddition. Journal of Organic Chemistry, 1997, 62, 1662-1667.	1.7	44
80	Towards an Understanding of the Polar Diels–Alder Reactions of Nitrosoalkenes with Enamines: A Theoretical Study. European Journal of Organic Chemistry, 2006, 2006, 2570-2580.	1.2	44
81	Nature of the ringâ€closure process along the rearrangement of octaâ€1,3,5,7â€tetraene to cyclooctaâ€1,3,5â€triene from the perspective of the electron localization function and catastrophe theory. Journal of Computational Chemistry, 2012, 33, 748-756.	1.5	44
82	Toward an Understanding of the Catalytic Role of Hydrogen-Bond Donor Solvents in the Hetero-Dielsâ^'Alder Reaction between Acetone and Butadiene Derivative. Journal of Physical Chemistry A, 2005, 109, 10438-10444.	1.1	43
83	A Theoretical Study of the Reaction between Cyclopentadiene and Protonated Imine Derivatives:Â A Shift from a Concerted to a Stepwise Molecular Mechanism. Journal of Organic Chemistry, 2001, 66, 6151-6157.	1.7	41
84	A Molecular Electron Density Theory Study of the Role of the Copper Metalation of Azomethine Ylides in [3 + 2] Cycloaddition Reactions. Journal of Organic Chemistry, 2018, 83, 10959-10973.	1.7	41
85	Studies on the Biosynthesis of Paraherquamide A and VM99955. A Theoretical Study of Intramolecular Dielsâ^'Alder Cycloaddition. Journal of Organic Chemistry, 2003, 68, 2895-2902.	1.7	40
86	Lewis Acid-Catalyzed [4 + 3] Cycloaddition of 2-(Trimethyl Silyloxy)acrolein with Furan. Insight on the Nature of the Mechanism from a DFT Analysis. Organic Letters, 2003, 5, 4117-4120.	2.4	39
87	Ring Expansion <i>versus</i> Cyclization in 4â€Oxoazetidineâ€2―carbaldehydes Catalyzed by Molecular Iodine: Experimental and Theoretical Study in Concert. Advanced Synthesis and Catalysis, 2010, 352, 1688-1700.	2.1	39
88	A Molecular Electron Density Theory Study of the Chemoselectivity, Regioselectivity, and Diastereofacial Selectivity in the Synthesis of an Anticancer Spiroisoxazoline derived from α-Santonin. Molecules, 2019, 24, 832.	1.7	39
89	Toward an understanding of the 1,3-dipolar cycloaddition between diphenylnitrone and a maleimide:bisamide complex. A DFT analysis of the reactivity of symmetrically substituted dipolarophiles. Computational and Theoretical Chemistry, 2007, 811, 125-133.	1.5	38
90	The domino reaction between 4,6-dinitrobenzofuroxan and cyclopentadiene. Insights on the nature of the molecular mechanism. Computational and Theoretical Chemistry, 2004, 709, 45-52.	1.5	37

#	Article	IF	CITATIONS
91	Density functional theory study of the 5-pyrrolidin-2-yltetrazole-catalyzed aldol reaction. Tetrahedron: Asymmetry, 2005, 16, 2764-2770.	1.8	37
92	Understanding the role of the Lewis acid catalyst on the 1,3-dipolar cycloaddition of N-benzylideneaniline N-oxide with acrolein: a DFT study. Tetrahedron, 2007, 63, 4464-4471.	1.0	37
93	Triplet Reactivity and Regio-/Stereoselectivity in the Macrocyclization of Diastereomeric Ketoprofenâ^'Quencher ConjugatesviaRemote Hydrogen Abstractions. Journal of the American Chemical Society, 2007, 129, 7407-7420.	6.6	36
94	Understanding the polar mechanism of the ene reaction. A DFT study. Organic and Biomolecular Chemistry, 2014, 12, 7581-7590.	1.5	36
95	Non-classical CHâ ^{,-} O hydrogen-bond determining the regio- and stereoselectivity in the [3 + 2] cycloaddition reaction of (Z)-C-phenyl-N-methylnitrone with dimethyl 2-benzylidenecyclopropane-1,1-dicarboxylate. A topological electron-density study. RSC Advances, 2015, 5. 99299-99311.	1.7	36
96	The carbenoid-type reactivity of simplest nitrile imine from a molecular electron density theory perspective. Tetrahedron, 2019, 75, 1961-1967.	1.0	36
97	A DFT study of the Diels–Alder reaction between methyl acrolein derivatives and cyclopentadiene. Understanding the effects of Lewis acids catalysts based on sulfur containing boron heterocycles. Tetrahedron, 2006, 62, 5502-5509.	1.0	35
98	Understanding the Mechanism of the Intramolecular Stetter Reaction. A DFT Study. Molecules, 2012, 17, 1335-1353.	1.7	34
99	Unveiling the Lewis Acid Catalyzed Diels–Alder Reactions Through the Molecular Electron Density Theory. Molecules, 2020, 25, 2535.	1.7	34
100	Theoretical Study of the Reaction of Dimethyl Acetylenedicarboxylate with 1-Methyl-2-(1-substituted) Tj ETQqO	0 0 rgBT /(1.0	Overlock 10 Ti
101	Theoretical study of the solvent effects on the mechanisms of addition of dimethyl acetylenedicarboxylate to 1-methyl-2-vinylpyrrole. Tetrahedron, 1996, 52, 10693-10704.	1.0	33
102	Comparative theoretical study of transition structures, barrier heights, and reaction energies for the intramolecular tautomerization in acetaldehyde/vinyl alcohol and acetaldimine/vinylamine systems. International Journal of Quantum Chemistry, 1998, 66, 9-24.	1.0	33
103	A DFT Characterization of the Mechanism for the Cycloaddition Reaction between 2-Methylfuran and Acetylenedicarboxylic Acid. Journal of Physical Chemistry A, 1999, 103, 11425-11430.	1.1	33
104	Theoretical Study of the Mechanisms for the Alkoxyacetic Acids Decomposition. Journal of Physical Chemistry A, 1999, 103, 3935-3943.	1.1	33
105	Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons. Tetrahedron, 2005, 61, 417-422.	1.0	33
106	A combined experimental and theoretical study of the thermal cycloaddition of aryl azides with activated alkenes. Organic and Biomolecular Chemistry, 2011, 9, 4295.	1.5	33
107	A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with ketenes. Organic and Biomolecular Chemistry, 2017, 15, 1618-1627.	1.5	33
108	On Transition Structures for Hydride Transfer Step: A Theoretical Study of the Reaction Catalyzed by	2.0	32

On Transition Structures for Hydride Transfer Step: A Theoretical Study of the Reaction Catalyzed by Dihydrofolate Reductase Enzyme. Bioorganic Chemistry, 1996, 24, 10-18. 108

#	Article	IF	CITATIONS
109	Ab InitioStudy of Stereo- and Regioselectivity in the Dielsâ `Alder Reaction between 2-Phenylcyclopentadiene and α-(Methylthio)acrylonitrile. Journal of Organic Chemistry, 1997, 62, 1775-1778.	1.7	32
110	Potential energy surface for the decomposition of mandelic acid. Chemical Physics Letters, 1997, 274, 422-428.	1.2	32
111	A DFT study for the regioselective 1,3-dipolar cycloadditions of nitrile N-oxides toward alkynylboronates. Tetrahedron, 2003, 59, 9167-9171.	1.0	32
112	Toward an Understanding of the Acceleration of Dielsâ^'Alder Reactions by a Pseudo-intramolecular Process Achieved by Molecular Recognition. A DFT Study. Journal of Organic Chemistry, 2007, 72, 4220-4227.	1.7	32
113	A DFT study of the asymmetric (S)-5-(pyrrolidin-2-yl)-1H-tetrazole catalyzed Michael addition of carbonyl compounds to nitroalkenes. Tetrahedron: Asymmetry, 2007, 18, 157-164.	1.8	32
114	Experimental and theoretical study on the substitution reactions of aryl 2,4-dinitrophenyl carbonates with quinuclidines. Tetrahedron, 2006, 62, 2555-2562.	1.0	31
115	Understanding the regio- and chemoselective polar [3+2] cycloaddition of the Padwa carbonyl ylides with α-methylene ketones. A DFT study. Tetrahedron, 2009, 65, 4644-4651.	1.0	31
116	A Close Look to the Oxaphosphetane Formation along the Wittig Reaction: A [2+2] Cycloaddition?. Journal of Organic Chemistry, 2020, 85, 6675-6686.	1.7	31
117	Stereoselection Parameters and Theoretical Model in the Enantioselective Protonation of Enolates with α-Sulfinyl Alcohols. Journal of Organic Chemistry, 1998, 63, 9342-9347.	1.7	30
118	Polar [3 + 2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones. Organic and Biomolecular Chemistry, 2008, 6, 3144.	1.5	30
119	Experimental and Theoretical Studies on the Radical-Cation-Mediated Imino-Diels–Alder Reaction. Organic Letters, 2011, 13, 5116-5119.	2.4	30
120	Controlled Rearrangement of Lactamâ€Tethered Allenols with Brominating Reagents: A Combined Experimental and Theoretical Study on α―versus βâ€Keto Lactam Formation. Chemistry - A European Journal, 2011, 17, 11559-11566.	1.7	30
121	A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C–C bond-formation step. Organic and Biomolecular Chemistry, 2014, 12, 895-904.	1.5	30
122	Unravelling the strain-promoted [3+2] cycloaddition reactions of phenyl azide with cycloalkynes from the molecular electron density theory perspective. New Journal of Chemistry, 2020, 44, 13633-13643.	1.4	30
123	Remarkable effect of lithium bromide in the enantioselective protonation with α-sulfinyl alcohols. Tetrahedron Letters, 1998, 39, 3277-3280.	0.7	29
124	Diastereomeric Differentiation in the Quenching of Excited States by Hydrogen Donors. Angewandte Chemie - International Edition, 2003, 42, 2531-2534.	7.2	29
125	Ï€-Strain-Induced Electrophilicity in Small Cycloalkynes: A DFT Analysis of the Polar Cycloaddition of Cyclopentyne towards Enol Ethers. European Journal of Organic Chemistry, 2006, 2006, 498-506.	1.2	28
126	A DFT Study of the [3 + 2] versus [4 + 2] Cycloaddition Reactions of 1,5,6-Trimethylpyrazinium-3-olate with Methyl Methacrylate. Journal of Organic Chemistry, 2013, 78, 1621-1629.	1.7	28

#	Article	IF	CITATIONS
127	A DFT Study of Inter―and Intramolecular Aryne Ene Reactions. European Journal of Organic Chemistry, 2015, 2015, 2826-2834.	1.2	28
128	Understanding the Nature of the Molecular Mechanisms Associated with the Competitive Lewis Acid Catalyzed[4+2] and[4+3] Cycloadditions between Arylidenoxazolone Systems and Cyclopentadiene: A DFT Analysis. Chemistry - A European Journal, 2004, 10, 4742-4749.	1.7	27
129	Mechanistic details of the domino reaction of nitronaphthalenes with the electron-rich dienes. A DFT study. Computational and Theoretical Chemistry, 2008, 853, 68-76.	1.5	27
130	Understanding the reactivity and regioselectivity of [3 + 2] cycloaddition reactions between substituted nitrile oxides and methyl acrylate. A molecular electron density theory study. International Journal of Quantum Chemistry, 2017, 117, e25451.	1.0	27
131	Unveiling the Different Chemical Reactivity of Diphenyl Nitrilimine and Phenyl Nitrile Oxide in [3+2] Cycloaddition Reactions with (R)-Carvone through the Molecular Electron Density Theory. Molecules, 2020, 25, 1085.	1.7	27
132	Electronic fluxes during dielsâ€alder reactions involving 1,2â€benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory. Journal of Computational Chemistry, 2012, 33, 2400-2411.	1.5	26
133	The mechanism of ionic Diels–Alder reactions. A DFT study of the oxa-Povarov reaction. RSC Advances, 2014, 4, 16567-16577.	1.7	26
134	Polar Diels–Alder reactions using electrophilic nitrobenzothiophenes. A combined experimental and DFT study. Journal of Molecular Structure, 2015, 1079, 47-53.	1.8	26
135	A combined experimental and theoretical study of the unimolecular elimination kinetics of 2-alkoxypropionic acids in the gas phase. Chemical Physics, 1999, 246, 1-12.	0.9	25
136	A DFT Study of the Domino Inter [4 + 2]/Intra [3 + 2] Cycloaddition Reactions of Nitroalkenes with Enol Ethers. Journal of Organic Chemistry, 2000, 65, 1076-1083.	1.7	25
137	DFT Study of the Molecular Mechanism of Lewis Acid Induced [4 + 3] Cycloadditions of 2-Alkylacroleins with Cyclopentadiene. Journal of Organic Chemistry, 2009, 74, 5934-5940.	1.7	25
138	A theoretical study of the molecular mechanism for the oxidation of methanol by PQQ. Journal of the American Chemical Society, 1995, 117, 8807-8815.	6.6	24
139	On Transition Structures for Hydride Transfer Step in Enzyme Catalysis. A Comparative Study on Models of Glutathione Reductase Derived from Semiempirical, HF, and DFT Methods. Journal of Organic Chemistry, 1996, 61, 7777-7783.	1.7	24
140	Better Understanding of the Ring-Cleavage Process of Cyanocyclopropyl Anionic Derivatives. A Theoretical Study Based on the Electron Localization Function. Journal of Organic Chemistry, 2006, 71, 754-762.	1.7	24
141	Scandiumâ€Catalyzed Preparation of Cytotoxic 3â€Functionalized Quinolinâ€2â€ones: Regioselective Ring Enlargement of Isatins or Imino Isatins. ChemPlusChem, 2012, 77, 563-569.	1.3	24
142	Synthesis of Densely Functionalised 5â€Halogenâ€1,3â€oxazinâ€2â€ones by Halogenâ€Mediated Regioselective Cyclisation of <i>N</i> â€Cbzâ€Protected Propargylic Amines: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2013, 19, 14852-14860.	1.7	24
143	A mechanistic study of the participation of azomethine ylides and carbonyl ylides in [3+2] cycloaddition reactions. Tetrahedron, 2015, 71, 1050-1057.	1.0	24
144	A DFT study of the ionic [2+2] cycloaddition reactions of keteniminium cations with terminal acetylenes. Tetrahedron, 2015, 71, 2421-2427.	1.0	24

#	Article	IF	CITATIONS
145	A molecular electron density theory study of the enhanced reactivity of aza aromatic compounds participating in Diels–Alder reactions. Organic and Biomolecular Chemistry, 2020, 18, 292-304.	1.5	24
146	Experimental and theoretical investigations for the regio and stereoselective transformation of trans 1,2,3-trisubstituted aziridines into trans oxazolidin-2-ones. Tetrahedron, 2003, 59, 677-683.	1.0	23
147	Mechanism of Triplet Photosensitized Dielsâ°'Alder Reaction between Indoles and Cyclohexadienes:Â Theoretical Support for an Adiabatic Pathway. Journal of Organic Chemistry, 2006, 71, 6932-6941.	1.7	23
148	A DFT Study of the Molecular Mechanisms of the Nucleophilic Addition of Ester-Derived Lithium Enolates and Silyl Ketene Acetals to Nitrones: Effects of the Lewis Acid Catalyst. European Journal of Organic Chemistry, 2006, 2006, 3464-3472.	1.2	23
149	Understanding C–C bond formation in polar reactions. An ELF analysis of the Friedel–Crafts reaction between indoles and nitroolefins. RSC Advances, 2013, 3, 7520.	1.7	23
150	Tautomerism in pyridazin-3(2H)-one: A theoretical study using implicit/explicit solvation models. Journal of Molecular Graphics and Modelling, 2014, 49, 47-54.	1.3	23
151	Unravelling the mechanism of the ketene-imine Staudinger reaction. An ELF quantum topological analysis. RSC Advances, 2015, 5, 37119-37129.	1.7	23
152	Understanding the carbenoid-type reactivity of nitrile ylides in [3+2] cycloaddition reactions towards electron-deficient ethylenes: a molecular electron density theory study. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	23
153	Steric interactions controlling the <i>syn</i> diastereofacial selectivity in the [3Â+Â2] cycloaddition reaction between acetonitrile oxide and 7-oxanorborn-5-en-2-ones: A molecular electron density theory study. Journal of Physical Organic Chemistry, 2017, 30, e3710.	0.9	23
154	Toward an Understanding of the Mechanisms of the Intramolecular [5 + 2] Cycloaddition Reaction of γ-Pyrones Bearing Tethered Alkenes. A Theoretical Study. Journal of Organic Chemistry, 2000, 65, 5480-5486.	1.7	22
155	Geometrical Effects on the Intramolecular Quenching of ï€,ï€* Aromatic Ketones by Phenols and Indoles. Journal of Organic Chemistry, 2004, 69, 8618-8625.	1.7	22
156	A DFT study of the role of the Lewis acid catalysts in the [3 + 2] cycloaddition reaction of the electrophilic nitrone isomer of methyl glyoxylate oxime with nucleophilic cyclopentene. RSC Advances, 2015, 5, 64098-64105.	1.7	22
157	A DFT study of the mechanism and selectivities of the [3Â+Â2] cycloaddition reaction between 3â€(benzylideneamino)oxindole and <i>trans</i> â€Î²â€nitrostyrene. Journal of Physical Organic Chemistry, 2017, 30, e3637.	0.9	22
158	A molecular electron density theory study of the [3Â+Â2] cycloaddition reaction between an azomethine imine and electron deficient ethylenes. Journal of Physical Organic Chemistry, 2018, 31, e3830.	0.9	22
159	Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation. Frontiers in Chemistry, 2021, 9, 735236.	1.8	22
160	Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels–Alder reactions. Organic and Biomolecular Chemistry, 2010, 8, 3678.	1.5	21
161	An ELF analysis of the Câ \in C bond formation step in the N-heterocyclic carbene-catalyzed hydroacylation of unactivated Câ \in C double bonds. RSC Advances, 2012, 2, 7127.	1.7	21
162	A Combined Experimental and Theoretical Study of the Ammonium Bifluoride Catalyzed Regioselective Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines. Synthesis, 2015, 47, 2680-2689.	1.2	21

#	Article	IF	CITATIONS
163	Understanding the high reactivity of carbonyl compounds towards nucleophilic carbenoid intermediates generated from carbene isocyanides. RSC Advances, 2015, 5, 84797-84809.	1.7	21
164	A molecular electron density theory study of [3Â+Â2] cycloaddition reactions of chiral azomethine ylides with β-nitrostyrene. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	21
165	[3+2] Cycloaddition Reaction of <i>C</i> â€Phenylâ€ <i>N</i> â€methyl Nitrone to Acyclicâ€Olefinâ€Bearing Electronâ€Donating Substituent: A Molecular Electron Density Theory Study. ChemistrySelect, 2018, 3, 8373-8380.	0.7	21
166	An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide. International Journal of Quantum Chemistry, 2019, 119, e25980.	1.0	21
167	Unveiling the high reactivity of strained dibenzocyclooctyne in [3 + 2] cycloaddition reactions with diazoalkanes through the molecular electron density theory. Journal of Physical Organic Chemistry, 2020, 33, e4100.	0.9	21
168	A molecular electron density theory investigation of the molecular mechanism, regioselectivity, stereoselectivity and chemoselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazarsole. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	21
169	A Molecular Electron Density Theory Study of the Lewis Acid Catalyzed [3+2] Cycloaddition Reactions of Nitrones with Nucleophilic Ethylenes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	21
170	Conjugate addition of organolithium reagents to α,β-unsaturated carboxylic acids. Tetrahedron, 1999, 55, 815-830.	1.0	20
171	Experimental and theoretical investigations for the tandem alkylation–isomerization reactions between unsaturated carboxylic acids and allyl halides. Tetrahedron, 2003, 59, 6233-6239.	1.0	20
172	The nucleophilic addition of nitrones to carbonyl compounds: insights on the nature of the mechanism of the l-proline induced asymmetric reaction from a DFT analysis. Tetrahedron: Asymmetry, 2004, 15, 1541-1549.	1.8	20
173	Lewis acid induced [4+3] cycloadditions of 2-silyloxyacroleins. Insights on the mechanism from a DFT analysis. Tetrahedron, 2005, 61, 7538-7545.	1.0	20
174	The role of the trifluoromethyl group in reactivity and selectivity in polar cycloaddition reactions. A DFT study. Tetrahedron, 2012, 68, 8457-8462.	1.0	20
175	Understanding the formation of [3+2] and [2+4] cycloadducts in the Lewis acid catalysed reaction between methyl glyoxylate oxime and cyclopentadiene: a theoretical study. RSC Advances, 2013, 3, 447-457.	1.7	20
176	A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs. Physical Chemistry Chemical Physics, 2015, 17, 10715-10725.	1.3	20
177	Understanding the [2n+2n] reaction mechanism between a carbenoid intermediate and CO ₂ . Molecular Physics, 2016, 114, 1374-1391.	0.8	20
178	A molecular electron density theory study of the Grignard reagentâ€mediated regioselective direct synthesis of 1,5â€disubstitutedâ€1,2,3â€triazoles. Journal of Physical Organic Chemistry, 2020, 33, e4062.	0.9	20
179	Highly Diastereoselective One-Pot Synthesis of Spiro{cyclopenta[a]indene-2,2â€~-indene}diones from 1-Indanones and Aromatic Aldehydes. Journal of Organic Chemistry, 2006, 71, 3464-3471. 	1.7	19
180	Understanding the Bond Formation in Hetero-Diels-Alder Reactions. An ELF Analysis of the Reaction of Nitroethylene with Dimethylvinylamine. Current Organic Chemistry, 2012, 16, 2343-2351.	0.9	19

#	Article	IF	CITATIONS
181	A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with strained allenes. RSC Advances, 2017, 7, 26879-26887.	1.7	19
182	Understanding the domino reaction between 1-diazopropan-2-one and 1,1-dinitroethylene. A molecular electron density theory study of the [3 + 2] cycloaddition reactions of diazoalkanes with electron-deficient ethylenes. RSC Advances, 2017, 7, 15586-15595.	1.7	19
183	Conversion of dehydroabietic acid into 20-keto-C-aryl-18-norsteroids. Formation of the D ring. Journal of Organic Chemistry, 1988, 53, 3761-3765.	1.7	18
184	Toward an Understanding of the Selectivity in Domino Reactions. A DFT Study of the Reaction between Acetylenedicarboxylic Acid and 1,3-Bis(2-furyl)propane. Journal of Organic Chemistry, 2000, 65, 3473-3477.	1.7	18
185	A DFT study of the mechanism of Brønsted acid catalysed Povarov reactions. Tetrahedron, 2015, 71, 9339-9345.	1.0	18
186	Aromaticity in Pericyclic Transition State Structures? A Critical Rationalisation Based on the Topological Analysis of Electron Density. ChemistrySelect, 2016, 1, 6026-6039.	0.7	18
187	Deciphering the Mechanism of Silver Catalysis of "Click―Chemistry in Water by Combining Experimental and MEDT Studies. Catalysts, 2020, 10, 956.	1.6	18
188	Molecular Electron Density Theory: A New Theoretical Outlook on Organic Chemistry. Frontiers in Computational Chemistry, 2020, , 174-227.	0.1	18
189	A DFT Study of the Molecular Mechanisms of the Dielsâ^'Alder Reaction between Cyclopentadiene and 3-Phenyl-1-(2-pyridyl)-2-propen-1-one â^' Role of the Zn2+ Lewis Acid Catalyst and Water Solvent. European Journal of Organic Chemistry, 2002, 2002, 2557.	1.2	17
190	The 1,3-dipolar cycloaddition of 1H-pyridinium-3-olate and 1-methylpyridinium-3-olate with methyl acrylate: a density functional theory study. Tetrahedron, 2010, 66, 9187-9193.	1.0	17
191	On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study. Molecules, 2012, 17, 13687-13703.	1.7	17
192	lonic liquids and microwave irradiation as synergistic combination for polar Diels–Alder reactions using properly substituted heterocycles as dienophiles. A DFT study related. Tetrahedron Letters, 2012, 53, 6508-6511.	0.7	17
193	A DFT study of [3 + 2] cycloaddition reactions of an azomethine imine with N-vinyl pyrrole and N-vinyl tetrahydroindole. Journal of Molecular Graphics and Modelling, 2016, 70, 296-304.	1.3	17
194	Understanding the stereoselectivity in BrÃ,nsted acid catalysed Povarov reactions generating cis/trans CF ₃ -substituted tetrahydroquinolines: a DFT study. RSC Advances, 2016, 6, 17064-17073.	1.7	17
195	A molecular electron density theory study of the Lewis acid–catalyzed decomposition reaction of nitroethyl benzoate using aluminum derivatives. Journal of Physical Organic Chemistry, 2019, 32, e3938.	0.9	17
196	Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3 + 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. Journal of Organic Chemistry, 2021, 86, 12644-12653.	1.7	17
197	Conversion of sandaracopimaric acid into an androstane analog steroid. Journal of Organic Chemistry, 1990, 55, 2369-2373.	1.7	16
198	Theoretical model of solvated lithium dienediolate of 2-butenoic acid. Tetrahedron, 1995, 51, 7207-7214.	1.0	16

#	Article	IF	CITATIONS
199	Diastereoselectivity of the reactions of organometallic reagents with protected d- and l-erythrulose 1,3-O-ethylidene acetals. Tetrahedron: Asymmetry, 1997, 8, 559-577.	1.8	16
200	First synthesis of the chiral mixed O/S ligands, 1,2-sulfinyl thiols: application as chiral proton sources in enantioselective protonations of enolates. Tetrahedron: Asymmetry, 2000, 11, 3481-3493.	1.8	16
201	Lewis Acid Mediated Domino Reaction between 2-Cyclohexenone and Methyl Azide - A DFT Study. European Journal of Organic Chemistry, 2005, 2005, 4705-4709.	1.2	16
202	Efficient Synthesis of 5â€Chalcogenylâ€1,3â€oxazinâ€2â€ones by Chalcogenâ€Mediated Yne–Carbamate Cycl An Experimental and Theoretical Study. European Journal of Organic Chemistry, 2015, 2015, 1020-1027.	isation: 1.2	16
203	Molecular Electron Density Theory Study of <i>Fused</i> Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Cyclic Nitrones. ChemistrySelect, 2018, 3, 5412-5420.	0.7	16
204	Mpro-SARS-CoV-2 Inhibitors and Various Chemical Reactivity of 1-Bromo- and 1-Chloro-4-vinylbenzene in [3 + 2] Cycloaddition Reactions. Organics, 2021, 2, 1-16.	0.6	16
205	A density functional theory study of the chemoselectivity and regioselectivity of the domino cycloaddition reactions of nitroalkenes with substituted alkenes. Theoretical Chemistry Accounts, 2000, 104, 240-246.	0.5	15
206	An AM1 theoretical study on the effect of Zn2+ Lewis acid catalysis on the mechanism of the cycloaddition between 3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene. Tetrahedron, 2002, 58, 2695-2700.	1.0	15
207	Theoretical Studies on Domino Cycloaddition Reactions. Mini-Reviews in Organic Chemistry, 2005, 2, 47-57.	0.6	15
208	A DFT Analysis of the Strain-Induced Regioselective[2+2]Cycloaddition of Benzyne Possessing Fused Four-Membered Ring. Letters in Organic Chemistry, 2005, 2, 68-73.	0.2	15
209	Theoretical Calculations on the Cycloreversion of Oxetane Radical Cations. Journal of Physical Chemistry A, 2005, 109, 2602-2607.	1.1	15
210	Experimental and Theoretical Studies on the Mechanism of Photochemical Hydrogen Transfer from 2-Aminobenzimidazole to nï€* and ï€ï€*Aromatic Ketones. Journal of Physical Chemistry B, 2010, 114, 11920-11926.	1.2	15
211	A quantum chemical topological analysis of the C–C bond formation in organic reactions involving cationic species. Physical Chemistry Chemical Physics, 2014, 16, 14108.	1.3	15
212	Understanding the domino reaction between 3-chloroindoles and methyl coumalate yielding carbazoles. A DFT study. Organic and Biomolecular Chemistry, 2015, 13, 2034-2043.	1.5	15
213	An MEDT study of the carbenoid-type [3 + 2] cycloaddition reactions of nitrile ylides with electron-deficient chiral oxazolidinones. Organic and Biomolecular Chemistry, 2016, 14, 10427-10436.	1.5	15
214	Does a fluorinated Lewis acid catalyst change the molecular mechanism of the decomposition process of nitroethyl carboxylates?. Research on Chemical Intermediates, 2018, 44, 325-337.	1.3	15
215	An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2,5-dimethyl-2H-[1,2,3]diazaphosphole: a MEDT study. Journal of Chemical Sciences, 2019, 131, 1.	0.7	15
216	A molecular electron density theory study of the mechanism, chemo- and stereoselectivity of the epoxidation reaction of <i>R</i> -carvone with peracetic acid. RSC Advances, 2019, 9, 28500-28509.	1.7	15

#	Article	IF	CITATIONS
217	Influence of conformational factors on acidâ€catalyzed cyclizations of germacranolides: Molecular structure of the cyclization products of gallicin and 8αâ€hydroxygallicin (shonachalin a). Liebigs Annalen, 1995, 1995, 1837-1841.	0.8	14
218	Theoretical model of solvated lithium dienediolates of methyl substituted 2-butenoic acids. Tetrahedron, 1996, 52, 11105-11112.	1.0	14
219	Alkoxy-styryl DCDHF fluorophores. Physical Chemistry Chemical Physics, 2010, 12, 7768.	1.3	14
220	Understanding the selectivity in the formation of Îʿ-lactams <i>vs.</i> β-lactams in the Staudinger reactions of chloro-cyan-ketene with unsaturated imines. A DFT study. RSC Advances, 2014, 4, 58559-58566.	1.7	14
221	Understanding the molecular mechanism of the [3 + 2] cycloaddition reaction of benzonitrile oxide toward electronâ€rich <i>N</i> â€vinylpyrrole: a DFT study. Journal of Physical Organic Chemistry, 2016, 29, 368-376.	0.9	14
222	Unveiling the Chemo―and Regioselectivity of the [3+2] Cycloaddition Reaction between 4â€Chlorobenzonitrile Oxide and βâ€Aminocinnamonitrile with a MEDT Perspective**. ChemistrySelect, 2021, 6, 4521-4532.	0.7	14
223	Theozyme for antibody aldolases. Characterization of the transition-state analogueElectronic supplementary information (ESI) available: MP2/6-31G** energies, imaginary frequencies and cartesian coordinates. See http://www.rsc.org/suppdata/ob/b2/b209636f/. Organic and Biomolecular Chemistry, 2003. 1. 637-643.	1.5	13
224	Dielsâ^ Alder Reaction between Indoles and Cyclohexadienes Photocatalyzed by Ï€,Ï€* Aromatic Ketones. Organic Letters, 2004, 6, 3905-3908.	2.4	13
225	Lewis Acid Induced [2+2] Cycloadditions of Silyl Enol Ethers with α,β-Unsaturated Esters: A DFT Analysis. European Journal of Organic Chemistry, 2005, 2005, 3973-3979.	1.2	13
226	DFT Study on the Molecular Mechanism of the [4 + 2] Cycloaddition between Thiobenzophenone and Arylalkenes <i>via</i> Radical Cations. Journal of Physical Chemistry A, 2009, 113, 5718-5722.	1.1	13
227	Polar Diels-Alder Reactions Developed in a Protic Ionic Liquid: 3-Nitroindole as Dienophile. Theoretical Studies Using DFT Methods. Letters in Organic Chemistry, 2012, 9, 691-695.	0.2	13
228	Ring splitting of azetidin-2-ones via radical anions. Organic and Biomolecular Chemistry, 2012, 10, 7928.	1.5	13
229	Understanding the participation of 3-nitropyridine in polar Diels–Alder reactions. A DFT study. Computational and Theoretical Chemistry, 2015, 1072, 37-42.	1.1	13
230	A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σp in [3+2] Cycloaddition Reactions of Aryl Azide/Alkyne Derivatives. Molecules, 2016, 21, 1434.	1.7	13
231	Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	13
232	Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study. Journal of Molecular Structure, 2017, 1147, 155-160.	1.8	13
233	A Molecular Electron Density Theory Study of the Competitiveness of Polar Diels–Alder and Polar Alder-ene Reactions. Molecules, 2018, 23, 1913.	1.7	13
234	Understanding the Mechanism of Nitrobenzene Nitration with Nitronium Ion: A Molecular Electron Density Theory Study. ChemistrySelect, 2019, 4, 13313-13319.	0.7	13

#	Article	IF	CITATIONS
235	Lithium Cation-Catalyzed Benzene Diels–Alder Reaction: Insights on the Molecular Mechanism Within the Molecular Electron Density Theory. Journal of Organic Chemistry, 2020, 85, 13121-13132.	1.7	13
236	Understanding the Reactivity of Trimethylsilyldiazoalkanes Participating in [3+2] Cycloaddition Reactions towards Diethylfumarate with a Molecular Electron Density Theory Perspective. Organics, 2020, 1, 3-18.	0.6	13
237	Photogeneration ofo-Quinone Methides fromo-Cycloalkenylphenols. Journal of Organic Chemistry, 2003, 68, 9643-9647.	1.7	12
238	Experimental and theoretical study of the [3 + 2] cycloaddition of carbonyl ylides with alkynes. Organic and Biomolecular Chemistry, 2012, 10, 8434.	1.5	12
239	Experimental and Theoretical MEDT Study of the Thermal [3+2] Cycloaddition Reactions of Aryl Azides with Alkyne Derivatives. ChemistrySelect, 2018, 3, 1215-1223.	0.7	12
240	On the nature of organic electron density transfer complexes within molecular electron density theory. Organic and Biomolecular Chemistry, 2019, 17, 6478-6488.	1.5	12
241	Understanding the Origin of the Regioselectivity in Non-Polar [3+2] Cycloaddition Reactions through the Molecular Electron Density Theory. Organics, 2020, 1, 19-35.	0.6	12
242	Unveiling the Substituent Effects in the Stereochemistry of [3+2] Cycloaddition Reactions of Aryl―and Alkyldiazomethylphosphonates with Norbornadiene within a MEDT Perspective. ChemistrySelect, 2021, 6, 10722-10733.	0.7	12
243	Straightforward Regio- and Diastereoselective Synthesis, Molecular Structure, Intermolecular Interactions and Mechanistic Study of Spirooxindole-Engrafted Rhodanine Analogs. Molecules, 2021, 26, 7276.	1.7	12
244	Ground and excited-state intramolecular interactions in phenol–olefin bichromophoric compounds. Journal of the Chemical Society Perkin Transactions II, 1998, , 2175-2180.	0.9	11
245	A DFT study of the role of the Mg complex formation on the mechanism of the 1,3-dipolar cycloadditions of benzonitrile oxides with acryloylpyrazolidinone. Computational and Theoretical Chemistry, 2010, 942, 26-31.	1.5	11
246	WHY DIELS-ALDER REACTIONS ARE NON-CONCERTED PROCESSES. Journal of the Chilean Chemical Society, 2014, 59, 2615-2618.	0.5	11
247	A DFT study of the mechanism of NHC catalysed annulation reactions involving α,β-unsaturated acyl azoliums and β-naphthol. Organic and Biomolecular Chemistry, 2016, 14, 8338-8345.	1.5	11
248	Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	11
249	A molecular electron density theory study of the chemo- and regioselective [3 + 2] cycloaddition reactions between trifluoroacetonitrile N-oxide and thioketones. Chemical Physics, 2018, 501, 128-137.	0.9	11
250	Are one-step aromatic nucleophilic substitutions of non-activated benzenes concerted processes?. Organic and Biomolecular Chemistry, 2019, 17, 8185-8193.	1.5	11
251	Unveiling the high reactivity of cyclohexynes in [3 + 2] cycloaddition reactions through the molecular electron density theory. Organic and Biomolecular Chemistry, 2019, 17, 498-508.	1.5	11
252	A Molecular Electron Density Theory Study of the Synthesis of Spirobipyrazolines through the Domino Reaction of Nitrilimines with Allenoates. Molecules, 2019, 24, 4159.	1.7	11

#	Article	IF	CITATIONS
253	Unveiling the high reactivity of benzyne in the formal [3+2] cycloaddition reactions towards thioamides through the Molecular Electron Density Theory. Tetrahedron, 2020, 76, 131458.	1.0	11
254	A molecular electron density theory study for [3 + 2] cycloaddition reactions of <scp>1â€pyrroline</scp> â€1â€oxide with disubstituted acetylenes leading to bicyclic 4â€isoxazolines. International Journal of Quantum Chemistry, 2021, 121, e26503.	1.0	11
255	High chemoselectivity of CS dipolarophile in 1,3-dipolar cycloaddition of nitrilimines and 1,2,4-triazepin-5-one derivatives: experimental, theoretical and X-ray study. Journal of Physical Organic Chemistry, 2005, 18, 522-528.	0.9	10
256	Understanding the influence of Lewis acids in the regioselectivity of the Diels–Alder reactions of 2-methoxy-5-methyl-1,4-benzoquinone: A DFT study. Computational and Theoretical Chemistry, 2009, 902, 103-108.	1.5	10
257	Experimental and theoretical studies on polar Diels–Alder reactions of 1-nitronaphathalene developed in ionic liquids. RSC Advances, 2013, 3, 13825.	1.7	10
258	Theoretical study of the regio- and stereoselectivity of the intramolecular Povarov reactions yielding 5H-chromeno[2,3-c] acridine derivatives. RSC Advances, 2016, 6, 15759-15769.	1.7	10
259	Divulging the various chemical reactivity of trifluoromethyl-4-vinyl-benzene as well as methyl-4-vinyl-benzene in [3+2] cycloaddition reactions. Journal of Molecular Graphics and Modelling, 2021, 102, 107760.	1.3	10
260	Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory. New Journal of Chemistry, 2021, 45, 13626-13638.	1.4	10
261	A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Pseudo(mono)radical Azomethine Ylides with Phenyl Vinyl Sulphone. Organics, 2022, 3, 122-136.	0.6	10
262	A theoretical study on the decomposition mechanism of β-propiolactone and β-butyrolactone. Chemical Physics Letters, 1998, 288, 261-269.	1.2	9
263	The tandem Diels-Alder reaction between acetylenedicarboxyaldehyde and N,N'-dipyrrolylmethane. An ab initio study of the molecular mechanisms. Computational and Theoretical Chemistry, 1998, 426, 257-262.	1.5	9
264	A DFT study for the formation of imidazo[1,2-c]pyrimidines through an intramolecular Michael addition. Tetrahedron, 2006, 62, 10408-10416.	1.0	9
265	1,3-Dipolar cycloaddition of 1H-pyrazinium-3-olate and N1- and C-methyl substituted pyrazinium-3-olates with methyl acrylate: a density functional theory study. Tetrahedron, 2011, 67, 8383-8391.	1.0	9
266	A DFT study of the role of Lewis acid catalysts in the mechanism of the 1,3-dipolar cycloaddition of nitrile imines towards electron-deficient acryloyl derivatives. Computational and Theoretical Chemistry, 2012, 986, 6-13.	1.1	9
267	Understanding the reaction mechanism of the Lewis acid (MgBr2)-catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	9
268	A combined experimental and theoretical study of the thermal [3+2] cycloaddition of carbonyl ylides with activated alkenes. Journal of Molecular Structure, 2018, 1157, 276-287.	1.8	9
269	Unveiling the Unexpected Reactivity of Electrophilic Diazoalkanes in [3+2] Cycloaddition Reactions within Molecular Electron Density Theory. Chemistry, 2021, 3, 74-93.	0.9	9
270	Synthesis of Spirooxindole Analogs Tethered Pyrazole Scaffold as Acetylcholinesterase Inhibitors. ChemistrySelect, 2021, 6, 14039-14053.	0.7	9

#	Article	IF	CITATIONS
271	The tandem Diels-Alder reaction of dimethyl acetylenedicarboxylate to bicyclopentadiene. A theoretical study of the molecular mechanisms. Tetrahedron Letters, 1996, 37, 7573-7576.	0.7	8
272	Domino reaction between 2-acylfurans and diethyl azodicarboxylate: a combined experimental, theoretical, X-ray and dynamic NMR study. Journal of the Chemical Society Perkin Transactions II, 1999, , 73-80.	0.9	8
273	Theoretical Study on the Molecular Mechanism of the Domino Cycloadditions between Dimethyl Acetylenedicarboxylate and Naphthaleno- and Anthracenofuranophane. Journal of Organic Chemistry, 1999, 64, 3026-3033.	1.7	8
274	The role of the transfer group in the intramolecular [5+2] cycloadditions of substituted β-hydroxy-γ-pyrones: a DFT analysis. Journal of Physical Organic Chemistry, 2005, 18, 610-615.	0.9	8
275	Formation of pyrazolâ€1,3,4â€thiadiazoles through 1,3â€dipolar cycloadditions of 3â€thioxoâ€{1,2,4]â€triazepinâ€5â€one with nitrilimines: an experimental and computational study. Journal of Physical Organic Chemistry, 2009, 22, 31-41.	0.9	8
276	Understanding the stereo†and regioselectivities of the polar Diels–Alder reactions between 2â€acetylâ€1,4â€benzoquinone and methyl substituted 1,3â€butadienes: a DFT study. Journal of Physical Organi Chemistry, 2009, 22, 578-584.	c 0.9	8
277	Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters, 2012, 14, 5700-5703.	2.4	8
278	Clicking Azides and Alkynes with Poly(pyrazolyl)borate-Copper(I) Catalysts: An Experimental and Computational Study. Catalysts, 2019, 9, 687.	1.6	8
279	Unravelling the kinetics and molecular mechanism of the degenerate Cope rearrangement of bullvalene. New Journal of Chemistry, 2020, 44, 6543-6552.	1.4	8
280	A molecular electron density theory (MEDT) study of the role of halogens (X ₂ =) Tj ETQq0 0 0 rgBT/C reactions. New Journal of Chemistry, 2020, 44, 19002-19012.)verlock 1 1.4	0 Tf 50 387 8
281	CONVERSION OF RESIN ACIDS INTO STEROIDAL COMPOUNDS. A REVIEW. Organic Preparations and Procedures International, 1991, 23, 321-356.	0.6	7
282	Experimental and theoretical push-pull Chemo- and regioselectivity in 1,3-Dipolar cycloaddition reactions: the case of benzotriazepin-5-one with mesitylnitrile oxide. Journal of Physical Organic Chemistry, 2007, 20, 245-254.	0.9	7
283	Invariance of electrophilicity of independent fragments. Application to intramolecular Diels–Alder reactions. Chemical Physics Letters, 2010, 499, 272-277.	1.2	7
284	Regio- and Stereoselectivity of the 1,3-Dipolar Cycloaddition of Pyridinium-3-olates and Pyrazinium-3-olates with Methyl Methacrylate: A Density Functional Theory Exploration. Current Organic Chemistry, 2012, 16, 1711-1722.	0.9	7
285	Computational Assessment of 1,3-Dipolar Cycloaddition of Nitrile Oxides with Ethene and [60]Fullerene. Heterocycles, 2012, 84, 719.	0.4	7
286	Azo-hydrazo conversion via [1,5]-hydrogen shifts. A combined experimental and theoretical study. Tetrahedron, 2012, 68, 6902-6907.	1.0	7
287	Understanding the high reactivity of triazolinediones in Diels-Alder reactions. A DFT study. Journal of Molecular Modeling, 2014, 20, 2207.	0.8	7
288	Synthesis, molecular structure and stability of fused bicyclic Δ4-1,2,4-oxadiazoline Pt(II) complexes. Polyhedron, 2015, 98, 55-63.	1.0	7

#	Article	IF	CITATIONS
289	Intrinsic relative nucleophilicity of indoles. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	7
290	Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. Journal of Photochemistry and Photobiology B: Biology, 2016, 155, 1-6.	1.7	7
291	DFT exploration of [3 + 2] cycloaddition reaction of 1 <i>H</i> -phosphorinium-3-olate and 1-methylphosphorinium-3-olate with methyl methacrylate. RSC Advances, 2018, 8, 27406-27416.	1.7	7
292	Participation of furoxancarbonitrile oxide in [3+2] cycloaddition reaction toward C–N triple bond: a Molecular Electron Density Theory study of regioselectivity and mechanistic aspect. Structural Chemistry, 2019, 30, 317-326.	1.0	7
293	Understanding the different reactivity of (<i>Z</i>)- and (<i>E</i>)-β-nitrostyrenes in [3+2] cycloaddition reactions. An MEDT study. RSC Advances, 2021, 11, 9698-9708.	1.7	7
294	Transformation of resin abietic acid into a pregnane-type steroid. Canadian Journal of Chemistry, 1991, 69, 379-382.	0.6	6
295	PM3 study of the domino reaction of nitroalkenes with silyl enol ethers. Journal of Physical Organic Chemistry, 1999, 12, 24-30.	0.9	6
296	A theoretical study of the selectivity for the domino [5+2]/[4+2] cycloadditions of γ-pyrones bearing tethered alkenes with substituted 1,3-butadienes. Tetrahedron, 2001, 57, 5597-5606.	1.0	6
297	Using theozymes for designing transition-state analogs for the intramolecular aldol reaction of δ-diketones. International Journal of Quantum Chemistry, 2001, 83, 338-347.	1.0	6
298	Exploring Two-State Reaction Pathways in the Photodimerization of Cyclohexadiene. ChemPhysChem, 2006, 7, 614-618.	1.0	6
299	Experimental and Theoretical (DFT) Characterization of the Excited States and N-Centered Radical Species Derived from 2-Aminobenzimidazole, the Core Substructure of a Family of Bioactive Compounds. Journal of Physical Chemistry B, 2010, 114, 6608-6613.	1.2	6
300	A Study of the Effects of the Lewis Acid Catalysts on Oxaâ€Dielsâ€Alder Reactions through Molecular Electron Density Theory. ChemistrySelect, 2020, 5, 5341-5348.	0.7	6
301	Unveiling the Different Reactivity of Bent and Linear Three-Atom-Components Participating in [3 + 2] Cycloaddition Reactions. Organics, 2021, 2, 274-286.	0.6	6
302	An approach to erythrophleum alkaloids. Synthesis of methyl (â^')-4-epi-cassamate. Tetrahedron Letters, 1986, 27, 3289-3292.	0.7	5
303	13C nuclear magnetic resonance spectra of several podocarpane and cassane diterpenoids. Magnetic Resonance in Chemistry, 1990, 28, 529-532.	1.1	5
304	Theoretical study of the reactions of 1-methyl-2-vinylpyrrole with methyl propiolate and with dimethyl acetylenedicarboxylate. Computational and Theoretical Chemistry, 1996, 362, 209-213.	1.5	5
305	Synthesis and characterization of molybdenum(VI)-dioxo complexes containing both coordinated thiolate and carboxylate groups. Reactions with their own free ligands. Inorganica Chimica Acta, 1998, 268, 145-150.	1.2	5
306	A PM3 study of the molecular mechanism for the cycloaddition between cyclopentadiene and protonated pyridine-imine derivatives. Computational and Theoretical Chemistry, 2001, 544, 79-90.	1.5	5

#	Article	IF	CITATIONS
307	Novel examples of the N-methyl effect on cyclisations of N-Boc derivatives of amino alcohols. A theoretical study. Tetrahedron, 2004, 60, 12067-12073.	1.0	5
308	A density functional theory study of the regio- and stereoselectivity of the 1,3-dipolar cycloaddition of C-methyl substituted pyrazinium-3-olates with methyl acrylate and methyl methacrylate. Computational and Theoretical Chemistry, 2013, 1025, 58-66.	1.1	5
309	Understanding the role of the trifluoromethyl group in reactivity and regioselectivity in [3+2] cycloaddition reactions of enol acetates with nitrones. A DFT study. Journal of Molecular Modeling, 2015, 21, 104.	0.8	5
310	Copper(I)-catalysed regioselective synthesis of pyrazolo[5,1-c]-1,2,4-triazoles: A DFT mechanistic study. Tetrahedron, 2017, 73, 4653-4662.	1.0	5
311	Quasi-RRHO approximation and DFT study for understanding the mechanism and kinetics of nitration reaction of benzonitrile with nitronium ion. Computational and Theoretical Chemistry, 2021, 1199, 113209.	1.1	5
312	Ring opening of cyclopropane in tricyclo[4.3.0.02,9]nonan-3-one with electrophile-nucleophile reagents. Tetrahedron, 1999, 55, 847-860.	1.0	4
313	Designing a Transition State Analogue for the Disfavored Intramolecular Michael Addition of 2-(2-Hydroxyethyl)acrylate Esters. Journal of Organic Chemistry, 1999, 64, 9164-9169.	1.7	4
314	A Combined Experimental and Theoretical Study of the Homogeneous, Unimolecular Decomposition Kinetics of 3-Chloropivalic Acid in the Gas Phase. Journal of Physical Chemistry A, 2001, 105, 1869-1875.	1.1	4
315	Theoretical study on the mechanism of the domino reactions of tertiary α-cyano-enamines and dimethyl acetylenedicarboxylate. Tetrahedron, 2001, 57, 169-177.	1.0	4
316	Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates. Molecules, 2008, 13, 1303-1311.	1.7	4
317	DFT Study on the Cycloreversion of Thietane Radical Cations. Journal of Physical Chemistry A, 2011, 115, 5443-5448.	1.1	4
318	The triplet excited state of the bioactive compound thiabendazole. Characterization and suitability as reporter for cyclodextrin complexation. Chemical Physics Letters, 2012, 525-526, 166-170.	1.2	4
319	A DFT study of the domino reactions between imidazole NHC, ketenimines and DMAD or MP acetylene derivatives yielding spiro-pyrroles. Computational and Theoretical Chemistry, 2014, 1030, 25-32.	1.1	4
320	Understanding the domino retro [3+2] cycloaddition/cyclization reaction of bicyclic isoxazolidines in the synthesis of spirocyclic alkaloids. A DFT study. Journal of Molecular Modeling, 2014, 20, 2347.	0.8	4
321	Site-selectivity control in hetero-Diels–Alder reactions of methylidene derivatives of lawsone through modification of the reactive carbonyl group: an experimental and theoretical study. Organic and Biomolecular Chemistry, 2019, 17, 692-702.	1.5	4
322	A molecular electron density theory study of the insertion of CO into frustrated Lewis pair boron-amidines: a [4 + 1] cycloaddition reaction. Dalton Transactions, 2019, 48, 9214-9224.	1.6	4
323	Understanding the domino reactions of alkyne-tethered N-tosylhydrazones yielding fused polycyclic pyrazoles. An MEDT study. Tetrahedron, 2019, 75, 2807-2816.	1.0	4
324	Aziridination of Aromatic Aldimines Through Stabilized Ammonium Ylides: A Molecular Electron Density Theory Study. European Journal of Organic Chemistry, 2019, 2019, 1605-1613.	1.2	4

#	Article	IF	CITATIONS
325	Understanding the Influence of the Trifluoromethyl Group on the Selectivities of the [3+2] Cycloadditions of Thiocarbonyl <i>S</i> â€methanides with α,βâ€Unsaturated Ketones. A MEDT study. ChemistrySelect, 2020, 5, 12791-12806.	0.7	4
326	A molecular electron density theory study of the higher-order cycloaddition reactions of tropone with electron-rich ethylenes. The role of the Lewis acid catalyst in the mechanism and pseudocyclic selectivity. New Journal of Chemistry, 2021, 46, 294-308.	1.4	4
327	Understanding the higher–order cycloaddition reactions of heptafulvene, tropone, and its nitrogen derivatives, with electrophilic and nucleophilic ethylenes inside the molecular electron density theory. New Journal of Chemistry, 2022, 46, 11520-11530.	1.4	4
328	Erythrophleum alkaloids. Synthesis of (–)-4-epi-cassamine. Journal of the Chemical Society Perkin Transactions 1, 1989, , 1875-1883.	0.9	3
329	A theoretical study of the addition of CH3MgCl to chiral α-alkoxy carbonyl compounds. Computational and Theoretical Chemistry, 1998, 426, 263-275.	1.5	3
330	A combined experimental and theoretical study of the alkylation of 3,5â€dithioxoâ€{1,2,4]triazepines. Journal of Physical Organic Chemistry, 2008, 21, 457-463.	0.9	3
331	Unveiling the Ionic Diels–Alder Reactions within the Molecular Electron Density Theory. Molecules, 2021, 26, 3638.	1.7	3
332	Synthesis and anti-Cancer Activity of a New Hybrid Based Spirooxindole-Pyrrolidine -Thiochromene Scaffolds <i>via</i> [3 + 2] Cycloaddition Reaction: Computational Investigation. Polycyclic Aromatic Compounds, 2023, 43, 2302-2320.	1.4	3
333	Does Cr(CO) ₃ Really behave as Catalyst in the Dielsâ€Alder Reaction of Styrene with Cyclopentadiene? A Molecular Electron Density Theory Study. ChemistrySelect, 2022, 7, .	0.7	3
334	[MoO2(SCPh2CO2)2]2â^' and [MoO(SCPh2CO2)2]â^' anion complexes. A theoretical structure characterization. Computational and Theoretical Chemistry, 1995, 339, 201-208.	1.5	2
335	Ring cleavage of 1-alkyl-2-aryl-3-(hydroxymethyl)pyrrolidines. A PM3 semiempirical study of molecular mechanism. Journal of the Chemical Society Perkin Transactions II, 1997, , 643-648.	0.9	2
336	Theoretical study of the molecular mechanism of the domino pathways for squarate ester sequential reactions. Journal of Physical Organic Chemistry, 1999, 12, 61-68.	0.9	2
337	Photogeneration and Reactivity of 1,n-Diphenyl-1,n-azabiradicals. Journal of Organic Chemistry, 2006, 71, 4439-4444.	1.7	2
338	Theoretical study on the molecular mechanism of the [5 + 2] vs. [4 + 2] cyclization mediated by Lewis acid in the quinone system. Organic and Biomolecular Chemistry, 2013, 11, 8357.	1.5	2
339	[3+2] Cycloaddition reaction of 1H-phosphorinium-3-olate and 1-methylphosphorinium-3-olate with methyl acrylate: A DFT study. Computational and Theoretical Chemistry, 2016, 1087, 36-47.	1.1	2
340	Understanding the Intramolecular Dielsâ€Alder Reactions of Nâ€Substituted Nâ€Allylâ€Furfurylamines: An MEDT Study. ChemistrySelect, 2017, 2, 9736-9743.	0.7	2
341	Structure, Reactivity, Nonlinear Optical Properties and Vibrational Study of 5-Thioxo-1,4-thiazaolidin-3-one and 5-thioxo-1,4,2-thiazasilolidin-3-one (Silicon vs. Carbon). A DFT Study. Silicon, 2019, 11, 2135-2147.	1.8	2
342	Unraveling the kinetics and molecular mechanism of gas phase pyrolysis of cubane to [8]annulene. RSC Advances, 2020, 10, 32730-32739.	1.7	2

#	Article	IF	CITATIONS
343	Atmospheric Oxidation Reactions of Methyl Salicylate as Green Leaf Volatiles by OH Radical: Theoretical Kinetics and Mechanism. ChemistrySelect, 2020, 5, 12535-12547.	0.7	2
344	Transition structure for hydride transfer from cyclopropene to azirinium cation. Computational and Theoretical Chemistry, 1996, 363, 257-261.	1.5	1
345	Intramolecular NH/Ï€ Complexes of 2-Allylaniline Derivatives in the Ground and Excited States. Journal of Physical Chemistry A, 2005, 109, 1758-1763.	1.1	1
346	Editorial [Hot Topic: Applications of Reactivity Indices based on Density Functional Theory to the Study of Organic Reactions. The Case of the Diels-Alder Reaction (Guest Editor: Luis R. Domingo)]. Letters in Organic Chemistry, 2011, 8, 81-81.	0.2	1
347	A DFT Study of the Regioselectivity in Intramolecular Diels-Alder Reactions with Formation of a Tricyclodecane Skeleton. Letters in Organic Chemistry, 2011, 8, 125-131.	0.2	1
348	A DFT Study of the Conversion of Ptaquiloside, a Bracken Fern Carcinogen, to Pterosin B in Neutral and Acidic Aqueous Medium. ChemistrySelect, 2017, 2, 8178-8186.	0.7	1
349	Calculation of the rate constants for hydrogen abstraction reactions by Hydroperoxyl radical from Methanol, and the investigation of stability of CH3OH.HO2 complex. Computational and Theoretical Chemistry, 2020, 1190, 113010.	1.1	1
350	A molecular electron density theory study of the [3 + 2] cycloaddition reaction of 1,4-diphosphorinium-3-olates with methyl acrylate and methyl methacrylate. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	1
351	Closer Investigation of the Kinetics and Mechanism of Spirovinylcyclopropyl Oxindole Reaction with 3Σ–g-O2 by Topological Approaches and Unraveling the Role of the I2 Catalyst. Journal of Physical Chemistry A, 2021, 125, 6913-6926.	1.1	1
352	Unveiling the <i>cbâ€ŧype</i> Intramolecular [3+2] Cycloaddition Reactions of Fluorinated Azomethine Ylides to Ester Carbonyls with a Molecular Electron Density Theory Perspective. ChemistrySelect, 2022, 7, .	0.7	1
353	A bibracchial lariat aza-crown ether as an abiotic catalyst of malonic acid enolization. New Journal of Chemistry, 2007, 31, 2065.	1.4	0
354	Xanthone-photosensitized detoxification of the veterinary anthelmintic fenbendazole. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 264, 34-40.	2.0	0
355	Theoretical studies on cycloaddition reactions. Journal of Cheminformatics, 2014, 6, .	2.8	0
356	Diels-Alderase Catalyzing the Cyclization Step in the Biosynthesis of Spinosyn A. , 2015, , 169-201.		0
357	Unveiling the Intramolecular Ionic Diels–Alder Reactions within Molecular Electron Density Theory. Chemistry, 2021, 3, 834-853.	0.9	0
358	On the Catalytic Effects of the Thiazolium Salt in the Oxa-Diel-Alder Reaction between Benzaldehyde and Danishefsky's Diene: A Molecular Electron Density Theory Study. Organic and Biomolecular Chemistry, 2021, 19, 9306-9317.	1.5	0
359	Theoretical Studies on the Mechanism of the Formation of Cyclopentadienes and Dihydropyridazines. ChemistrySelect, 2021, 6, 9806-9813.	0.7	0