Vijayendran Raghavendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3363448/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry, 2008, 283, 9089-9100.	3.4	870
2	Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering Reports, 2021, 145, 100623.	31.8	120
3	Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology, 2019, 273, 521-528.	9.6	114
4	Sucrose and <i>Saccharomyces cerevisiae</i> : a relationship most sweet. FEMS Yeast Research, 2016, 16, fov107.	2.3	99
5	A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnology for Biofuels, 2018, 11, 160.	6.2	97
6	Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metabolic Engineering, 2004, 6, 352-363.	7.0	73
7	Phenotypic characterization of glucose repression mutants ofSaccharomyces cerevisiae using experiments with13C-labelled glucose. Yeast, 2004, 21, 769-779.	1.7	50
8	Hap4 Is Not Essential for Activation of Respiration at Low Specific Growth Rates in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2006, 281, 12308-12314.	3.4	31
9	A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil. Antonie Van Leeuwenhoek, 2017, 110, 971-983.	1.7	27
10	Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 2020, 77, 89-138.	2.4	22
11	Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability. Applied Microbiology and Biotechnology, 2018, 102, 2101-2116.	3.6	20
12	A microbubble-sparged yeast propagation–fermentation process for bioethanol production. Biotechnology for Biofuels, 2020, 13, 104.	6.2	15
13	A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express, 2018, 8, 114.	3.0	13
14	Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids. FEMS Yeast Research, 2019, 19, .	2.3	11
15	The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production. AMB Express, 2020, 10, 219.	3.0	10
16	Ethanol yield calculations in biorefineries. FEMS Yeast Research, 2021, 21, .	2.3	6
17	Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2022, 88, aem0206821.	3.1	5
18	Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an example. Biochemistry and Molecular Biology Education, 2005, 33, 404-410.	1.2	4

0

#	Article	IF	CITATIONS
19	Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform. FEMS Yeast Research, 2020, 20, .	2.3	1

20 Validation of a small scale and a low cost anaerobic system for microbial applications. , 0, , .