
Stefan Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336291/publications.pdf Version: 2024-02-01

STEEAN EDANK

#	Article	IF	CITATIONS
1	A Risk-Informed Decision-Making Framework for Climate Change Adaptation through Robust Land Use and Irrigation Planning. Sustainability, 2022, 14, 1430.	3.2	5
2	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
3	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
4	A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renewable and Sustainable Energy Reviews, 2021, 137, 110602.	16.4	89
5	Can N ₂ O emissions offset the benefits from soil organic carbon storage?. Global Change Biology, 2021, 27, 237-256.	9.5	174
6	Land-based climate change mitigation potentials within the agenda for sustainable development. Environmental Research Letters, 2021, 16, 024006.	5.2	32
7	Paying the price for environmentally sustainable and healthy EU diets. Global Food Security, 2021, 28, 100437.	8.1	24
8	How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.	5.2	4
9	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
10	Net zero-emission pathways reduce the physical and economic risks of climate change. Nature Climate Change, 2021, 11, 1070-1076.	18.8	39
11	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
12	Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets. Nature Food, 2021, 2, 970-980.	14.0	21
13	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	3.6	38
14	Global hunger and climate change adaptation through international trade. Nature Climate Change, 2020, 10, 829-835.	18.8	117
15	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
16	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	12.8	241
17	Shared socio-economic pathways and their implications for global materials use. Resources, Conservation and Recycling, 2020, 160, 104866.	10.8	42
18	Greenhouse gas abatement strategies and costs in French dairy production. Journal of Cleaner Production, 2019, 236, 117589.	9.3	17

Stefan Frank

#	Article	IF	CITATIONS
19	Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management, 2019, 10, 567-587.	2.4	113
20	Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability, 2019, 2, 826-833.	23.7	49
21	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
22	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	3.6	496
23	Model-based assessments for long-term climate strategies. Nature Climate Change, 2019, 9, 345-347.	18.8	22
24	Contribution of the land sector to a 1.5 $\hat{A}^{\circ}C$ world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
25	Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 2019, 9, 66-72.	18.8	139
26	How to spend a dwindling greenhouse gas budget. Nature Climate Change, 2018, 8, 7-10.	18.8	119
27	Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature Communications, 2018, 9, 1060.	12.8	52
28	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	39.5	733
29	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	5.2	172
30	Forest Resource Projection Tools at the European Level. Managing Forest Ecosystems, 2017, , 49-68.	0.9	12
31	Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030. Climatic Change, 2016, 138, 253-266.	3.6	29
32	Impacts of global climate change mitigation scenarios on forests and harvesting in Sweden. Canadian Journal of Forest Research, 2016, 46, 1427-1438.	1.7	19
33	Assessing the land resource–food price nexus of the Sustainable Development Goals. Science Advances, 2016, 2, e1501499.	10.3	162
34	The dynamic soil organic carbon mitigation potential of European cropland. Global Environmental Change, 2015, 35, 269-278.	7.8	34
35	Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3709-3714.	7.1	407
36	Global food markets, trade and the cost of climate change adaptation. Food Security, 2014, 6, 29-44.	5.3	26

Stefan Frank

#	Article	IF	CITATIONS
37	How effective are the sustainability criteria accompanying the European Union 2020 biofuel targets?. GCB Bioenergy, 2013, 5, 306-314.	5.6	31
38	Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs. Biomass and Bioenergy, 2013, 57, 86-96.	5.7	110
39	Future GHG emissions more efficiently controlled by land-use policies than by bioenergy sustainability criteria. Biofuels, Bioproducts and Biorefining, 2013, 7, 115-125.	3.7	19