
Chiara Gualandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties. Bioactive Materials, 2022, 11, 230-239.	15.6	15
2	Reusable Cavitandâ€Based Electrospun Membranes for the Removal of Polycyclic Aromatic Hydrocarbons from Water. Small, 2022, 18, e2104946.	10.0	8
3	Thermoactive Smart Electrospun Nanofibers. Macromolecular Rapid Communications, 2022, 43, e2100694.	3.9	14
4	A Modular Composite Device of Poly(Ethylene Oxide)/Poly(Butylene Terephthalate) (PEOT/PBT) Nanofibers and Gelatin as a Dual Drug Delivery System for Local Therapy of Soft Tissue Tumors. International Journal of Molecular Sciences, 2022, 23, 3239.	4.1	11
5	Tantalum nanoparticles enhance the osteoinductivity of multiscale composites based on poly(lactide-co-glycolide) electrospun fibers embedded in a gelatin hydrogel. Materials Today Chemistry, 2022, 24, 100804.	3.5	5
6	Easy recovery of Li-ion cathode powders by the use of water-processable binders. Electrochimica Acta, 2022, 418, 140376.	5.2	11
7	One year of surgical mask testing at the University of Bologna labs: Lessons learned from data analysis. Separation and Purification Technology, 2022, 294, 121180.	7.9	5
8	PVDF/BaTiO3 composite foams with high content of \hat{I}^2 phase by thermally induced phase separation (TIPS). Journal of Polymer Research, 2022, 29, .	2.4	5
9	Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. Polymer International, 2021, 70, 499-505.	3.1	11
10	Unusual Cross-Linked Polystyrene by Copper-Catalyzed ARGET ATRP Using a Bifunctional Initiator and No Cross-Linking Agent. Macromolecular Research, 2021, 29, 280-288.	2.4	6
11	Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers, 2021, 13, 1804.	4.5	12
12	Design and In Vitro Study of a Dual Drug-Loaded Delivery System Produced by Electrospinning for the Treatment of Acute Injuries of the Central Nervous System. Pharmaceutics, 2021, 13, 848.	4.5	6
13	Nanotechnologyâ€Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVIDâ€19 Vaccines. Small Methods, 2021, 5, 2100402.	8.6	45
14	Nanotechnologyâ€Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVIDâ€19 Vaccines (Small) Tj ET	Qq0 <u>8</u> .60 rgl	BT ¦Overlock
15	Deep eutectic solvent and agar: a new green gel to remove proteinaceous-based varnishes from paintings. Journal of Cultural Heritage, 2021, 51, 138-144.	3.3	12
16	Production of polyhydroxybutyrate by the cyanobacterium cf. Anabaena sp International Journal of Biological Macromolecules, 2021, 191, 92-99.	7.5	11

17	Evaluation of the potential performance of hyphenated pyrolysis-anaerobic digestion (Py-AD) process for carbon negative fuels from woody biomass. Renewable Energy, 2020, 148, 1190-1199.	8.9	24	
10	Hierarchical electrospun tendonâ€ligament bioinspired scaffolds induce changes in fibroblasts	1.0		

¹⁸ morphology under static and dynamic conditions. Journal of Microscopy, 2020, 277, 160-169.

Chiara Gualandi

#	Article	IF	CITATIONS
19	The Pulsed Electron Deposition Technique for Biomedical Applications: A Review. Coatings, 2020, 10, 16.	2.6	13
20	Biodegradable electrospun fibers enriched with struvite crystal seeds for the recovery of phosphorous and nitrogen. European Polymer Journal, 2020, 122, 109389.	5.4	6
21	Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle. Frontiers in Bioengineering and Biotechnology, 2020, 8, 767.	4.1	29
22	Elastomeric Electrospun Scaffolds of a Biodegradable Aliphatic Copolyester Containing PEG-Like Sequences for Dynamic Culture of Human Endothelial Cells. Biomolecules, 2020, 10, 1620.	4.0	6
23	Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 39620-39629.	8.0	18
24	Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS Applied Materials & amp; Interfaces, 2020, 12, 26320-26329.	8.0	13
25	Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues. Materials Science and Engineering C, 2020, 113, 110998.	7.3	28
26	Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. Journal of Neurotrauma, 2020, 37, 1708-1719.	3.4	16
27	Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural. Processes, 2020, 8, 45.	2.8	16
28	Morphologically bioinspired hierarchical nylon 6,6 electrospun assembly recreating the structure and performance of tendons and ligaments. Medical Engineering and Physics, 2019, 71, 79-90.	1.7	27
29	Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Materials Science and Engineering C, 2019, 104, 109893.	7.3	67
30	Multiscale hierarchical bioresorbable scaffolds for the regeneration of tendons and ligaments. Biofabrication, 2019, 11, 035026.	7.1	45
31	Functional and smart materials by electrospinning for advanced applications. AIP Conference Proceedings, 2019, , .	0.4	0
32	INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY. Journal of Mechanics in Medicine and Biology, 2019, 19, 1950049.	0.7	3
33	Tendon Fascicle-Inspired Nanofibrous Scaffold of Polylactic acid/Collagen with Enhanced 3D-Structure and Biomechanical Properties. Scientific Reports, 2018, 8, 17167.	3.3	59
34	Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 3212.	4.1	32
35	Advances in multidrug delivery from electrospun nanomaterials. , 2018, , 405-430.		3
36	Shape memory electrospun nonwovens based on crosslinked poly(Îμ-caprolactone) for multifunctional biological applications. AIP Conference Proceedings, 2018, , .	0.4	1

CHIARA GUALANDI

#	Article	IF	CITATIONS
37	Highly Sensitive, Anisotropic, and Reversible Stress/Strainâ€&ensors from Mechanochromic Nanofiber Composites. Advanced Materials, 2018, 30, e1802813.	21.0	98
38	Carbon on poly(ε-caprolactone) (PCL) Ink-jet Printed Sensor for Monitoring Cell Cultures of Myoblasts. IFMBE Proceedings, 2018, , 783-786.	0.3	1
39	Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication, 2017, 9, 015025.	7.1	53
40	Mutifunctional Electrospun Nonwoven Mats with Twoâ€Way Shape Memory Behavior Prepared from Sol–Gel Crosslinked Poly(εâ€Caprolactone). Macromolecular Materials and Engineering, 2017, 302, 1600519.	3.6	19
41	Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range. Biomacromolecules, 2017, 18, 2499-2508.	5.4	17
42	Cell delivery for regenerative medicine by using bioresorbable polymers. , 2017, , 365-389.		1
43	Fast Coprecipitation of Calcium Phosphate Nanoparticles inside Gelatin Nanofibers by Tricoaxial Electrospinning. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	7
44	Polyâ€ <scp>l</scp> ‣actic Acid Nanofiber–Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing. Macromolecular Bioscience, 2016, 16, 1533-1544.	4.1	31
45	Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers. Scientific Reports, 2016, 6, 38542.	3.3	43
46	An innovative co-axial system to electrospin <i>in situ</i> crosslinked gelatin nanofibers. Biomedical Materials (Bristol), 2016, 11, 025007.	3.3	11
47	Facile fabrication of shape memory poly(ε-caprolactone) non-woven mat by combining electrospinning and sol–gel reaction. RSC Advances, 2016, 6, 43964-43974.	3.6	16
48	<i>In Vitro</i> Testing of Biomaterials for Neural Repair: Focus on Cellular Systems and High-Content Analysis. BioResearch Open Access, 2016, 5, 201-211.	2.6	6
49	Two-Way Shape Memory Behavior of Electrospun Non-Woven Mats Prepared from Sol-Gel Crosslinked Poly(ε-Caprolactone). Advances in Science and Technology, 2016, 97, 100-105.	0.2	2
50	Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. Biomaterials, 2016, 76, 261-272.	11.4	26
51	Atmospheric pressure non-thermal plasma for the production of composite materials. , 2015, , .		0
52	Electrospun Fibers Containing Bioâ€Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Properties. Macromolecular Materials and Engineering, 2015, 300, 1085-1095.	3.6	8
53	Effects of Nylon 6,6 nanofibrous mats on thermal properties and delamination behavior of high performance CFRP laminates. Polymer Composites, 2015, 36, 1303-1313.	4.6	28
54	Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer, 2015, 63, 154-163.	3.8	46

CHIARA GUALANDI

#	Article	IF	CITATIONS
55	Effect of Silica and Tin Oxide Nanoparticles on Properties of Nanofibrous Electrospun Separators. Journal of the Electrochemical Society, 2015, 162, A915-A920.	2.9	29
56	Solid-State Crosslinking of Polysaccharide Electrospun Fibers by Atmospheric Pressure Non-Equilibrium Plasma: A Novel Straightforward Approach. Plasma Processes and Polymers, 2015, 12, 1195-1199.	3.0	14
57	Crosslinking of water-soluble pullulan nanofibrous mats through atmospheric plasma treatment. , 2015, , .		0
58	Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Composites Part B: Engineering, 2015, 81, 189-195.	12.0	50
59	Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering C, 2014, 36, 130-138.	7.3	71
60	Nanohybrid Materials by Electrospinning. Advances in Polymer Science, 2014, , 87-142.	0.8	12
61	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	10.3	81
62	Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. Journal of Materials Science: Materials in Medicine, 2014, 25, 2313-2321.	3.6	63
63	Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells. Matrix Biology, 2014, 33, 68-76.	3.6	24
64	Atmospheric Pressure Non-Equilibrium Plasma Treatment to Improve the Electrospinnability of Poly(<scp>L</scp> -Lactic Acid) Polymeric Solution. Plasma Processes and Polymers, 2014, 11, 247-255.	3.0	36
65	Nanovascularization of Polymer Matrix: Generation of Nanochannels and Nanotubes by Sacrificial Electrospun fibers. Nano Letters, 2013, 13, 5385-5390.	9.1	36
66	Atmospheric plasma surface modification of electrospun poly(L-lactic acid): Effect on mat properties and cell culturing. , 2013, , .		0
67	Advantages of Surfaceâ€Initiated ATRP (SIâ€ATRP) for the Functionalization of Electrospun Materials. Macromolecular Rapid Communications, 2013, 34, 51-56.	3.9	32
68	The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days. Experimental Cell Research, 2013, 319, 1515-1522.	2.6	22
69	Study of the effect of atmospheric pressure plasma treatment on electrospinnability of poly-L-lactic acid solutions: Voltage waveform effect. , 2013, , .		1
70	Plasma assisted nanoparticle dispersion in polymeric solutions for the production of electrospun lithium battery separators. , 2013, , .		3
71	Poly(butylene/diethylene glycol succinate) multiblock copolyester as a candidate biomaterial for soft tissue engineering: Solid-state properties, degradability, and biocompatibility. Journal of Bioactive and Compatible Polymers, 2012, 27, 244-264.	2.1	41
72	Effect of Oxide Nanoparticles on Thermal and Mechanical Properties of Electrospun Separators for Lithium-Ion Batteries. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	23

CHIARA GUALANDI

#	Article	IF	CITATIONS
73	Ethanol disinfection affects physical properties and cell response of electrospun poly(l-lactic acid) scaffolds. European Polymer Journal, 2012, 48, 2008-2018.	5.4	46
74	Easily synthesized novel biodegradable copolyesters with adjustable properties for biomedical applications. Soft Matter, 2012, 8, 5466.	2.7	43
75	Fiber reinforcement of a biomimetic bone cement. Journal of Materials Science: Materials in Medicine, 2012, 23, 1363-1370.	3.6	10
76	Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr–epoxy composite laminates. Composite Structures, 2012, 94, 571-579.	5.8	112
77	Effect of Electrospun Fiber Diameter and Alignment on Macrophage Activation and Secretion of Proinflammatory Cytokines and Chemokines. Biomacromolecules, 2011, 12, 1900-1911.	5.4	236
78	Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1689-1699.	3.6	41
79	Electrospun nanofibers for enhancing structural performance of composite materials. Polymers for Advanced Technologies, 2011, 22, 339-349.	3.2	171
80	Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 2011, 7, 1702-1709.	8.3	217
81	Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering. Springer Theses, 2011, , .	0.1	8
82	Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomaterialia, 2010, 6, 130-136.	8.3	62
83	Electrospun Scaffolds of a Polyhydroxyalkanoate Consisting of ω-Hydroxylpentadecanoate Repeat Units: Fabrication and In Vitro Biocompatibility Studies. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1283-1296.	3.5	24
84	Paraffin Embedding Allows Effective Analysis of Proliferation, Survival, and Immunophenotyping of Cells Cultured on Poly(l-Lactic Acid) Electrospun Nanofiber Scaffolds. Tissue Engineering - Part C: Methods, 2010, 16, 751-760.	2.1	7
85	Bioresorbable electrospun nanofibrous scaffolds loaded with bioactive molecules. E-Polymers, 2009, 9, .	3.0	7
86	An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. Journal of Materials Science, 2009, 44, 4969-4975.	3.7	32