Alexander Mildner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 79-91.	14.3	2,528
2	Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science, 2014, 343, 776-779.	12.6	1,563
3	Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neuroscience, 2007, 10, 1544-1553.	14.8	910
4	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1677.	28.9	875
5	Chromatin state dynamics during blood formation. Science, 2014, 345, 943-949.	12.6	699
6	Macrophages: Development and Tissue Specialization. Annual Review of Immunology, 2015, 33, 643-675.	21.8	687
7	Development and Function of Dendritic Cell Subsets. Immunity, 2014, 40, 642-656.	14.3	637
8	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.	14.3	609
9	Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, 2005, 1, 323-330.	16.2	501
10	CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain, 2009, 132, 2487-2500.	7.6	393
11	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	14.3	352
12	Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 456-464.	8.2	329
13	Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 2007, 39, 969-976.	21.4	294
14	Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 11159-11171.	3.6	286
15	Genomic Characterization of Murine Monocytes Reveals C/EBPβ Transcription Factor Dependence of Ly6C â^' Cells. Immunity, 2017, 46, 849-862.e7.	14.3	233
16	P2Y ₁₂ receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia, 2017, 65, 375-387.	4.9	216
17	Microglia in the CNS: Immigrants from another world. Clia, 2011, 59, 177-187.	4.9	203
18	Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.	14.5	196

Alexander Mildner

#	Article	IF	CITATIONS
19	RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature, 2014, 506, 245-248.	27.8	195
20	Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nature Immunology, 2006, 7, 954-961.	14.5	182
21	C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell, 2020, 26, 657-674.e8.	11.1	180
22	Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain, 2006, 129, 2394-2403.	7.6	169
23	A Close Encounter of the Third Kind. Advances in Immunology, 2013, 120, 69-103.	2.2	125
24	Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood, 2013, 121, 1016-1027.	1.4	102
25	lκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system. Brain, 2011, 134, 1184-1198.	7.6	94
26	IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nature Communications, 2015, 6, 6525.	12.8	81
27	Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nature Immunology, 2020, 21, 525-534.	14.5	74
28	Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain, 2010, 133, 1067-1081.	7.6	73
29	CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3897-3902.	7.1	72
30	Toll-Like Receptor Prestimulation Increases Phagocytosis of <i>Escherichia coli</i> DH5α and <i>Escherichia coli</i> K1 Strains by Murine Microglial Cells. Infection and Immunity, 2009, 77, 557-564.	2.2	70
31	Dicer Deficiency Differentially Impacts Microglia of the Developing and Adult Brain. Immunity, 2017, 46, 1030-1044.e8.	14.3	68
32	miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. ELife, 2014, 3, e01964.	6.0	67
33	Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. Journal of Experimental Medicine, 2017, 214, 905-917.	8.5	63
34	Streptococcus pneumoniae Infection Aggravates Experimental Autoimmune Encephalomyelitis via Toll-Like Receptor 2. Infection and Immunity, 2006, 74, 4841-4848.	2.2	52
35	Murine Monocytes: Origins, Subsets, Fates, and Functions. Microbiology Spectrum, 2016, 4, .	3.0	48
36	Lymphotoxin β Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	1.3	45

#	Article	IF	CITATIONS
37	Ly-6G+CCR2â^' Myeloid Cells Rather Than Ly-6ChighCCR2+ Monocytes Are Required for the Control of Bacterial Infection in the Central Nervous System. Journal of Immunology, 2008, 181, 2713-2722.	0.8	43
38	Clonal allelic predetermination of immunoglobulin- \hat{I}^2 rearrangement. Nature, 2012, 490, 561-565.	27.8	42
39	Resistance of the Brain to Escherichia coli K1 Infection Depends on MyD88 Signaling and the Contribution of Neutrophils and Monocytes. Infection and Immunity, 2013, 81, 1810-1819.	2.2	34
40	Erythrocyte survival is controlled by microRNA-142. Haematologica, 2017, 102, 676-685.	3.5	33
41	Transcriptional Reprogramming of CD11b+Esamhi Dendritic Cell Identity and Function by Loss of Runx3. PLoS ONE, 2013, 8, e77490.	2.5	30
42	Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia, 2015, 63, 1083-1099.	4.9	29
43	MicroRNAâ€142 controls thymocyte proliferation. European Journal of Immunology, 2017, 47, 1142-1152.	2.9	29
44	Tolerance Induction in Experimental Autoimmune Encephalomyelitis Using Non-myeloablative Hematopoietic Gene Therapy With Autoantigen. Molecular Therapy, 2009, 17, 897-905.	8.2	26
45	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 1073-1079.	14.3	26
46	CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Annals of the Rheumatic Diseases, 2022, 81, 1162-1172.	0.9	10
47	Rac1 functions downstream of miR-142 in regulation of erythropoiesis. Haematologica, 2017, 102, e476-e480.	3.5	9
48	Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard. Biomedizinische Technik, 2018, 63, 95-103.	0.8	9
49	Editorial: Monocyte Heterogeneity and Function. Frontiers in Immunology, 2020, 11, 626725.	4.8	9
50	Tongue immune compartment analysis reveals spatial macrophage heterogeneity. ELife, 0, 11, .	6.0	6
51	Ghosts in the shell: identification of microglia in the human central nervous system by P2Y12 receptor. Neural Regeneration Research, 2017, 12, 570.	3.0	5
52	Myeloid transformation by <i>MLL</i> - <i>ENL</i> depends strictly on C/EBP. Life Science Alliance, 2021, 4, e202000709.	2.8	5
53	Device- and service profiles for integrated or systems based on open standards. Current Directions in Biomedical Engineering, 2015, 1, 538-542.	0.4	4
54	Development of Device-and Service-Profiles for a Safe and Secure Interconnection of Medical Devices in the Integrated Open OR. Lecture Notes in Computer Science, 2015, , 65-74.	1.3	4

#	Article	IF	CITATIONS
55	Good things come in threes. Science Immunology, 2018, 3, .	11.9	3
56	Murine Monocytes: Origins, Subsets, Fates, and Functions. , 2017, , 141-153.		2
57	Mapping the lung. Science, 2019, 363, 1154-1155.	12.6	2