
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362268/publications.pdf Version: 2024-02-01

SURFUN YOON

#	Article	IF	CITATIONS
1	Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A42.	2.2	169
2	Doped Lanthanum Nickelates with a Layered Perovskite Structure as Bifunctional Cathode Catalysts for Rechargeable Metal–Air Batteries. ACS Applied Materials & Interfaces, 2013, 5, 9902-9907.	8.0	146
3	Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. Journal of Power Sources, 2009, 186, 206-210.	7.8	117
4	High Performance N-Doped Mesoporous Carbon Decorated TiO ₂ Nanofibers as Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 8092-8098.	3.1	112
5	Hollow Core–Shell Mesoporous TiO2 Spheres for Lithium Ion Storage. Journal of Physical Chemistry C, 2011, 115, 9410-9416.	3.1	90
6	High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2007, 154, A917.	2.9	85
7	Sb-MO _{<i>x</i>} -C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 3898-3904.	6.7	76
8	Conductive surface modification of LiFePO4 with nitrogen-doped carbon layers for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4611.	6.7	76
9	Enhancement of capacity of carbon-coated Si–Cu3Si composite anode using metal–organic compound for lithium-ion batteries. Journal of Power Sources, 2006, 161, 1319-1323.	7.8	67
10	Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries. Applied Surface Science, 2019, 484, 701-709.	6.1	65
11	Urchin-like α-MnO2 decorated with Au and Pd as a bi-functional catalyst for rechargeable lithium–oxygen batteries. Journal of Power Sources, 2013, 244, 328-335.	7.8	58
12	Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 613, 187-192.	5.5	57
13	An Sn–Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries. Electrochimica Acta, 2009, 54, 2699-2705.	5.2	55
14	Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry, 2012, 22, 21845.	6.7	52
15	Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries. Electrochimica Acta, 2008, 54, 364-369.	5.2	51
16	High Dielectric, Robust Composite Protective Layer for Dendriteâ€Free and LiPF ₆ Degradationâ€Free Lithium Metal Anode. Advanced Functional Materials, 2019, 29, 1905078.	14.9	47
17	Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte. Electrochimica Acta, 2008, 53, 2501-2506.	5.2	45
18	Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 536, 179-183.	5.5	45

#	Article	IF	CITATIONS
19	CdS and CdSe Quantum Dotâ€Embedded Silicate Glasses for <scp>LED</scp> Color Converter. International Journal of Applied Glass Science, 2015, 6, 103-108.	2.0	45
20	Microwave-Solvothermal Synthesis of Various Polymorphs of Nanostructured TiO ₂ in Different Alcohol Media and Their Lithium Ion Storage Properties. Inorganic Chemistry, 2012, 51, 3505-3512.	4.0	42
21	Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 4082.	6.7	40
22	Nanoengineered Sn–TiC–C composite anode for lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 236-239.	6.7	38
23	Cu2Sb–Al2O3–C nanocomposite alloy anodes with exceptional cycle life for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 3242.	6.7	38
24	Preparation of nanostructured Ge/GeO2 composite in carbon matrix as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 188, 120-125.	5.2	35
25	The effect of Cu addition on Ge-based composite anode for Li-ion batteries. Electrochimica Acta, 2010, 55, 3324-3329.	5.2	33
26	Controlled synthesis of dual-phase carbon-coated Nb2O5/TiNb2O7 porous spheres and their Li-ion storage properties. Journal of Alloys and Compounds, 2018, 731, 437-443.	5.5	33
27	[4,4′-bi(1,3,2-dioxathiolane)] 2,2′-dioxide: A novel cathode additive for high-voltage performance in lithium ion batteries. Journal of Power Sources, 2018, 378, 112-118.	7.8	32
28	Delaminationâ€Free Multifunctional Separator for Longâ€Term Stability of Lithiumâ€Ion Batteries. Small, 2019, 15, e1804980.	10.0	32
29	Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite. Chemical Engineering Journal, 2020, 402, 126292.	12.7	32
30	Binary sulfone/ether-based electrolytes for rechargeable lithium-sulfur batteries. Electrochimica Acta, 2014, 145, 170-176.	5.2	31
31	Electrochemical characteristics of manganese oxide/carbon composite as a cathode material for Li/MnO2 secondary batteries. Journal of Power Sources, 2008, 183, 325-329.	7.8	29
32	Electrochemical properties of Si–Zn–C composite as an anode material for lithium-ion batteries. Journal of Power Sources, 2007, 167, 520-523.	7.8	27
33	Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Liâ \in "S batteries. Journal of Energy Chemistry, 2021, 60, 334-340.	12.9	26
34	Pâ€Đoped SiO <i>_x</i> /Si/SiO <i>_x</i> Sandwich Anode for Liâ€Ion Batteries to Achieve High Initial Coulombic Efficiency and Low Capacity Decay. Small Methods, 2022, 6, e2101052.	8.6	26
35	Mo ₃ Sb ₇ –C Composite Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 18909-18915.	3.1	24
36	A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 21214-21222.	10.3	23

#	Article	IF	CITATIONS
37	Improved electrochromic device performance from silver grid on flexible transparent conducting electrode prepared by electrohydrodynamic jet printing. Journal of Materials Chemistry C, 2017, 5, 12800-12806.	5.5	23
38	Synergistic high-voltage lithium ion battery performance by dual anode and cathode stabilizer additives. Journal of Power Sources, 2019, 441, 126668.	7.8	23
39	Mesoporous ZnMn ₂ O ₄ Nanospheres as a Nonprecious Bifunctional Catalyst for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 3293-3301.	5.1	23
40	Electrochemical performance of carbide-derived carbon anodes for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2013, 74, 1045-1055.	4.0	22
41	Copper, zinc, and manganese niobates (CuNb ₂ O ₆ ,) Tj ETQq1 1 0.784314 rgBT /Overlo Li ⁺ storage properties, and working mechanisms. Inorganic Chemistry Frontiers, 2020, 7, 3176-3183.	ck 10 Tf 5 6.0	0 592 Td (Zr 20
42	Soft, robust, Li-ion friendly halloysite-based hybrid protective layer for dendrite-free Li metal anode. Chemical Engineering Journal, 2021, 424, 130326.	12.7	20
43	Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5ÂV via 2,4-difluorobiphenyl additive. Journal of Power Sources, 2021, 512, 230513.	7.8	20
44	Crater-like architectural aluminum current collectors with superior electrochemical performance for Li-ion batteries. Journal of Electroanalytical Chemistry, 2017, 797, 37-41.	3.8	19
45	Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage. Journal of Power Sources, 2018, 389, 28-36.	7.8	19
46	Embossed aluminum as a current collector for high-rate lithium cathode performance. Journal of Power Sources, 2018, 398, 193-200.	7.8	19
47	Nanostructured Sn–Ti–C composite anodes for lithium ion batteries. Electrochimica Acta, 2011, 56, 3029-3035.	5.2	18
48	Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. Journal of Materials Science, 2013, 48, 5125-5131.	3.7	18
49	Facile microwave synthesis of CoFe2O4 spheres and their application as an anode for lithium-ion batteries. Journal of Applied Electrochemistry, 2014, 44, 1069-1074.	2.9	18
50	Metal iodides (Lil, MgI2, AlI3, TiI4, and SnI4) potentiality as electrolyte additives for Liâ^'S batteries. Electrochimica Acta, 2021, 391, 138927.	5.2	17
51	Insights into Lithium Surface: Stable Cycling by Controlled 10 μm Deep Surface Relief, Reinterpreting the Natural Surface Defect on Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 5656-5664.	5.1	16
52	Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. Journal of Applied Electrochemistry, 2013, 43, 245-252.	2.9	15
53	Facile conductive surface modification of Si nanoparticle with nitrogen-doped carbon layers for lithium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 2873-2878.	2.5	13
54	Superior Capacity Retention Sn–Ni–Fe–C Composite Anodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A190.	2.2	12

#	Article	IF	CITATIONS
55	Preparation of lithium titanate nanoparticles assisted by an ion-exchange process and their electrochemical performance as anode materials for Li-ion batteries. Journal of Alloys and Compounds, 2021, 886, 161296.	5.5	9
56	Effect of nitridation on LiMn1.5Ni0.5O4 and its application as cathode material in lithium-ion batteries. Journal of Applied Electrochemistry, 2016, 46, 479-485.	2.9	8
57	Si Nanoparticles Coated with Co-Containing N-Doped Carbon: Preparation and Characterization as Li-Ion Battery Anode Materials. Journal of Nanoscience and Nanotechnology, 2019, 19, 7753-7757.	0.9	6
58	The controlled release of active substance from one-dimensional inorganic nanocarrier for the stability enhancement of lithium batteries. Chemical Engineering Journal, 2022, 427, 131748.	12.7	6
59	One‣tep Spontaneous Formation of Dual Wrinkling on Uniform‣ized Microparticles Induced by Surface. Macromolecular Chemistry and Physics, 2017, 218, 1700152.	2.2	5
60	Tungsten oxide hydrate/polyvinylpyrrolidone/sulfur core-shell hollow particles as Li S battery cathode materials: Synthesis and electrochemical characterization. Journal of Electroanalytical Chemistry, 2018, 824, 9-13.	3.8	5
61	Facile synthesis and evaluation of MnCo2O4.5 nanoparticles as a bifunctional catalyst for zinc-air battery. Journal of Applied Electrochemistry, 2020, 50, 907-915.	2.9	5
62	A dual-function sulfite-type additive for long cycle life in high-voltage lithium metal batteries. Journal of Alloys and Compounds, 2021, 872, 159662.	5.5	5
63	Thiol-ene UV-curable sponge electrolyte for low-voltage color changing wearable tactile device. Polymer, 2022, 250, 124898.	3.8	4
64	Scalable Mesoporous Silicon-Carbon Composite Prepared by Stöber Method and Magnesiothermic Reduction for High Power Anode of Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 8468-8474.	0.9	3
65	Electromigration Reliability in Ag Lines Printed with Nanoparticle Inks: Implications for Printed Electronics. ACS Applied Nano Materials, 2022, 5, 2569-2577.	5.0	3
66	Fe2O3/N-doped carbon-modified SiOx particles via ionic liquid as anode materials for Li-ion batteries. Journal of Applied Electrochemistry, 0, , .	2.9	3
67	Li1+x Mn2â^'x O4 (0 ≤ ≤0.2) spinel mesorod cathode materials for rechargeable lithium batteries. Electronic Materials Letters, 2014, 10, 1133-1136.	2.2	2
68	Ammonolysed LiNi \$\$_{0.8}hbox {Co}_{0.15}hbox {Al}_{0.05}hbox {O}_{2}\$\$ 0.8 Co 0.15. Bulletin of Materials Science, 2018, 41, 1.	1.7	1
69	tert-Butylamine borane as a reductant in electroless nickel plating for improved etch resistance in the electrolyte. Bulletin of Materials Science, 2020, 43, 1.	1.7	1
70	Batteries: High Dielectric, Robust Composite Protective Layer for Dendriteâ€Free and LiPF ₆ Degradationâ€Free Lithium Metal Anode (Adv. Funct. Mater. 48/2019). Advanced Functional Materials, 2019, 29, 1970326.	14.9	0