
Stuart A Casson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336222/publications.pdf Version: 2024-02-01

STUADT & CASSON

#	Article	IF	CITATIONS
1	Physio-biochemical responses and expressional profiling analysis of drought tolerant genes in new promising rice genotype. PLoS ONE, 2022, 17, e0266087.	2.5	4
2	Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nature Plants, 2021, 7, 87-98.	9.3	42
3	Stomatal responses to carbon dioxide and light require abscisic acid catabolism in <i>Arabidopsis</i> . Interface Focus, 2021, 11, 20200036.	3.0	12
4	The Arabidopsis Râ€SNARE VAMP714 is essential for polarisation of PIN proteins and auxin responses. New Phytologist, 2021, 230, 550-566.	7.3	10
5	Inhibition of Arabidopsis stomatal development by plastoquinone oxidation. Current Biology, 2021, 31, 5622-5632.e7.	3.9	8
6	HY5 is not integral to light mediated stomatal development in Arabidopsis. PLoS ONE, 2020, 15, e0222480.	2.5	14
7	Molecular control of stomatal development. Biochemical Journal, 2018, 475, 441-454.	3.7	106
8	Origin and function of stomata in the moss Physcomitrella patens. Nature Plants, 2016, 2, 16179.	9.3	138
9	Plant Development: Suppression the Key toÂAsymmetric Cell Fate. Current Biology, 2016, 26, R1137-R1139.	3.9	1
10	Elevated CO 2 -Induced Responses in Stomata Require ABA and ABA Signaling. Current Biology, 2015, 25, 2709-2716.	3.9	201
11	Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist, 2014, 202, 376-391.	7.3	117
12	Connecting stomatal development and physiology. New Phytologist, 2014, 201, 1079-1082.	7.3	17
13	phytochrome B Is Required for Light-Mediated Systemic Control of Stomatal Development. Current Biology, 2014, 24, 1216-1221.	3.9	59
14	Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate. Current Biology, 2013, 23, 1805-1811.	3.9	80
15	POLARIS. , 2013, , 40-45.		Ο
16	GSK3-Like Kinases Integrate Brassinosteroid Signaling and Stomatal Development. Science Signaling, 2012, 5, pe30.	3.6	20
17	Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History. Current Biology, 2011, 21, 1030-1035.	3.9	162
18	Environmental regulation of stomatal development. Current Opinion in Plant Biology, 2010, 13, 90-95.	7.1	234

STUART A CASSON

#	Article	IF	CITATIONS
19	Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant Journal, 2010, 61, 698-712.	5.7	216
20	phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity. Current Biology, 2009, 19, 229-234.	3.9	164
21	MERISTEMâ€DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis. Plant Journal, 2009, 57, 857-869.	5.7	32
22	Isolation of RNA from laserâ€captureâ€microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. Molecular Plant Pathology, 2009, 10, 523-535.	4.2	39
23	Influence of environmental factors on stomatal development. New Phytologist, 2008, 178, 9-23.	7.3	300
24	Laser-Capture Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis. Methods in Molecular Biology, 2008, 427, 111-120.	0.9	10
25	Intercellular Peptide Signals Regulate Plant Meristematic Cell Fate Decisions. Science Signaling, 2008, 1, pe53.	3.6	11
26	Transcriptional Profiling of the Arabidopsis Embryo. Plant Physiology, 2007, 143, 924-940.	4.8	119
27	The POLARIS Peptide of Arabidopsis Regulates Auxin Transport and Root Growth via Effects on Ethylene Signaling. Plant Cell, 2006, 18, 3058-3072.	6.6	146
28	The turnip Mutant of Arabidopsis Reveals That LEAFY COTYLEDON1 Expression Mediates the Effects of Auxin and Sugars to Promote Embryonic Cell Identity. Plant Physiology, 2006, 142, 526-541.	4.8	91
29	The POLARIS Peptide. , 2006, , 23-27.		1
30	Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant Journal, 2005, 42, 111-123.	5.7	190
31	Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Molecular Plant Pathology, 2004, 5, 267-280.	4.2	20
32	KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Molecular Biology, 2004, 54, 71-84.	3.9	86
33	Genes and signalling in root development. New Phytologist, 2003, 158, 11-38.	7.3	92
34	Genes and signalling in root development. New Phytologist, 2003, 158, 11-38.	7.3	130
35	The POLARIS Gene of Arabidopsis Encodes a Predicted Peptide Required for Correct Root Growth and Leaf Vascular Patterning. Plant Cell, 2002, 14, 1705-1721.	6.6	164
36	Peptides: new signalling molecules in plants. Trends in Plant Science, 2002, 7, 78-83.	8.8	129