
Jiri Ullschmied

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3359340/publications.pdf Version: 2024-02-01

IDI HUSCHMIED

#	Article	IF	CITATIONS
1	The Prague Asterix Laser System. Physics of Plasmas, 2001, 8, 2495-2501.	1.9	259
2	Fast ignition by laser driven particle beams of very high intensity. Physics of Plasmas, 2007, 14, 072701.	1.9	101
3	Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. Journal of Applied Physics, 2011, 109, .	2.5	68
4	Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser and Particle Beams, 2008, 26, 379-387.	1.0	67
5	High performance SiC detectors for MeV ion beams generated by intense pulsed laser plasmas. Journal of Materials Research, 2013, 28, 87-93.	2.6	64
6	Stable dense plasma jets produced at laser power densities around 1014Wâ^•cm2. Physics of Plasmas, 2006, 13, 062704.	1.9	61
7	Generation of high pressure shocks relevant to the shock-ignition intensity regime. Physics of Plasmas, 2014, 21, .	1.9	55
8	Plasma jets produced in a single laser beam interaction with a planar target. Physics of Plasmas, 2006, 13, 062701.	1.9	45
9	Thomson parabola spectrometry for gold laser-generated plasmas. Physics of Plasmas, 2013, 20, .	1.9	41
10	Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Review of Scientific Instruments, 2014, 85, 103507.	1.3	41
11	Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser and Particle Beams, 2006, 24, 175-179.	1.0	37
12	Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser and Particle Beams, 2008, 26, 555-565.	1.0	37
13	Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Physics of Plasmas, 2012, 19, 053105.	1.9	36
14	Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Physics and Controlled Fusion, 2017, 59, 065007.	2.1	36
15	Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure. Applied Physics Letters, 2010, 96, 251502.	3.3	35
16	Proton Acceleration Driven by a Nanosecond Laser from a Cryogenic Thin Solid-Hydrogen Ribbon. Physical Review X, 2016, 6, .	8.9	34
17	Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50ÂPW/cm2. Laser and Particle Beams, 2014, 32, 177-195.	1.0	32
18	Recent results from experimental studies on laser–plasma coupling in a shock ignition relevant regime. Plasma Physics and Controlled Fusion, 2013, 55, 124045.	2.1	30

JIRI ULLSCHMIED

#	Article	IF	CITATIONS
19	Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix Laser System facility. Physics of Plasmas, 2008, 15, .	1.9	29
20	Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon. Physics of Plasmas, 2017, 24, .	1.9	29
21	Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma. Physics of Plasmas, 2015, 22, .	1.9	26
22	Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems. Physics of Plasmas, 2015, 22, 043302.	1.9	23
23	Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target. Physics of Plasmas, 2014, 21, 012708.	1.9	22
24	Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas. Radiation Effects and Defects in Solids, 2010, 165, 463-471.	1.2	21
25	Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets. Journal of Instrumentation, 2016, 11, C06004-C06004.	1.2	19
26	Laboratory modeling of supersonic radiative jets propagation in plasmas and their scaling to astrophysical conditions. Plasma Physics and Controlled Fusion, 2008, 50, 124056.	2.1	18
27	Observation of repetitive bursts in emission of fast ions and neutrons in sub-nanosecond laser-solid experiments. Laser and Particle Beams, 2013, 31, 395-401.	1.0	18
28	Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition. Laser and Particle Beams, 2015, 33, 221-236.	1.0	18
29	Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities. Physics of Plasmas, 2017, 24, .	1.9	18
30	Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser and Particle Beams, 2009, 27, 115-122.	1.0	17
31	New high-power laser facility PALS—prospects for laser–plasma research. Laser and Particle Beams, 1999, 17, 179-194.	1.0	16
32	Correlation of highly charged ion and X-ray emissions from the laser-produced plasma in the presence of non-linear phenomena. Radiation Effects and Defects in Solids, 2005, 160, 557-566.	1.2	16
33	TNSA and ponderomotive plasma production in enriched carbon polyethylene foils. Physics of Plasmas, 2017, 24, 043112.	1.9	16
34	Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system. Review of Scientific Instruments, 2017, 88, 045109.	1.3	16
35	Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side. Physics of Plasmas, 2015, 22, .	1.9	15
36	The influence of target irradiation conditions on the parameters of laser-produced plasma jets. Physics of Plasmas, 2007, 14, 032701.	1.9	14

JIRI ULLSCHMIED

#	Article	IF	CITATIONS
37	Particular features of the transmission of laser radiation with wavelength 0.438 µm and intensity (3–7)·1014 W/cm2 through an undercritical plasma from polymer aerogels. Journal of Russian Laser Research, 2007, 28, 548-566.	0.6	14
38	Comparison of computed and measured parameters of a driver for fast capillary discharge. , 0, , .		13
39	The Effect of Pre-plasma and Self-focusing on Characteristics of Laser Produced Ions. European Physical Journal D, 2005, 55, 691-699.	0.4	13
40	Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities. European Physical Journal D, 2009, 54, 487-492.	1.3	11
41	Improved generation of ion fluxes by a long laser pulse using laser-induced cavity pressure acceleration. Applied Physics Letters, 2013, 103, .	3.3	11
42	Experimental evidence of multimaterial jet formation with lasers. Physics of Plasmas, 2010, 17, .	1.9	10
43	Generation of high-energy neutrons with the 300-ps-laser system PALS. High Power Laser Science and Engineering, 2014, 2, .	4.6	10
44	High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 56-59.	1.4	10
45	The PALS iodine laser-driven jets. Plasma Physics and Controlled Fusion, 2007, 49, B611-B619.	2.1	9
46	Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. European Physical Journal D, 2006, 56, B506-B514.	0.4	7
47	Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles. Applied Physics Letters, 2009, 95, .	3.3	7
48	Short-wavelength experiments on laser pulse interaction with extended pre-plasma at the PALS-installation. Laser and Particle Beams, 2016, 34, 94-108.	1.0	7
49	Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme. Plasma Physics and Controlled Fusion, 2015, 57, 014007.	2.1	6
50	Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses. Plasma Physics and Controlled Fusion, 2016, 58, 014009.	2.1	6
51	Wavelength dependence of laser plasma interaction related to shock ignition approach. Laser and Particle Beams, 2018, 36, 405-426.	1.0	6
52	Detection of energetic ions emitted from laser-produced plasma by means of CR39 solid state nuclear track detectors. Radiation Effects and Defects in Solids, 2008, 163, 371-379.	1.2	5
53	Numerical simulation of high current relativistic electron flow. Laser and Particle Beams, 1988, 6, 587-591.	1.0	4
54	Application of a single-crystal CVD diamond detector for simultaneous measurement of ions and X-rays from laser plasmas. Radiation Effects and Defects in Solids, 2010, 165, 481-487.	1.2	4

JIRI ULLSCHMIED

#	Article	IF	CITATIONS
55	Studies of the laser-created craters produced on solid surfaces at various experimental conditions. European Physical Journal D, 2006, 56, B542-B549.	0.4	3
56	Reversed scheme of thin foil acceleration. Applied Physics Letters, 2008, 93, 101502.	3.3	3
57	Ion emission from laser ablation of Cu and Cu98/Be2 alloy targets. Radiation Effects and Defects in Solids, 2010, 165, 488-494.	1.2	3
58	Forward and backward cavity pressure acceleration of macroparticles. Applied Physics Letters, 2011, 99, 231501.	3.3	3
59	Generation of Secondary Particles From Subnanosecond Laser Irradiation of Targets at Intensities of <formula formulatype="inline"><tex notation="TeX">\$10^{16}~{m W}~{m cm}^{-2}\$</tex></formula> . IEEE Transactions on Plasma Science, 2013, 41, 2819-2824.	1.3	3
60	Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target. Physics of Plasmas, 2015, 22, 032709.	1.9	3
61	Generation of fast neutrons through deuteron acceleration at the PALS laser facility. Journal of Instrumentation, 2016, 11, C03050-C03050.	1.2	3
62	lon energy enhancement in laser-generated plasma of metallic-doped polymers. Radiation Effects and Defects in Solids, 2008, 163, 339-347.	1.2	2
63	Experiment on laser interaction with a planar target for conditions relevant to shock ignition. Physica Scripta, 2014, T161, 014017.	2.5	2
64	Ion Beam Analysis applied to laser-generated plasmas. Journal of Instrumentation, 2016, 11, C04011.	1.2	1
65	LASER-PRODUCED IONS FOR VARIOUS APPLICATIONS. , 2004, , .		1
66	Spectroscopic determination of turbulent Langmuir fields in a REB-heated plasma. , 0, , .		0
67	Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates. AIP Conference Proceedings, 2006, , .	0.4	0
68	Application of Resistive Bolometer to Measurement of X-Ray Radiation from Laser Plasmas. AIP Conference Proceedings, 2006, , .	0.4	0
69	Preliminary studies on fast particle diagnostics for the future fs-laser facility at PALS. Radiation Effects and Defects in Solids, 2010, 165, 419-428.	1.2	0
70	Investigation of efficiency of laser radiation energy transport into a planar massive target made of Al. , 2012, , .		0