
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3359052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. Journal of Experimental Botany, 2022, 73, 3355-3371.	4.8	18
2	Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. Frontiers in Plant Science, 2022, 13, .	3.6	1
3	<scp>mRNA N⁶</scp> â€methyladenosine is critical for cold tolerance in Arabidopsis. Plant Journal, 2022, 111, 1052-1068.	5.7	23
4	Characterizing microRNAs and their targets in different organs of Camellia sinensis var. assamica. Genomics, 2021, 113, 159-170.	2.9	10
5	Splice Variants of Superoxide Dismutases in Rice and Their Expression Profiles under Abiotic Stresses. International Journal of Molecular Sciences, 2021, 22, 3997.	4.1	9
6	The neglected other half ―role of the pistil in plant heat stress responses. Plant, Cell and Environment, 2021, 44, 2200-2210.	5.7	28
7	MicroRNA profiles in Sorghum exposed to individual drought or heat or their combination. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 848-861.	1.7	4
8	Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Functional and Integrative Genomics, 2020, 20, 739-761.	3.5	37
9	The Effect of Drought on Transcriptome and Hormonal Profiles in Barley Genotypes With Contrasting Drought Tolerance. Frontiers in Plant Science, 2020, 11, 618491.	3.6	33
10	Molecular Characterization of a Date Palm Vascular Highway 1-Interacting Kinase (PdVIK) under Abiotic Stresses. Genes, 2020, 11, 568.	2.4	6
11	Overexpression of a Metallothionein 2A Gene from Date Palm Confers Abiotic Stress Tolerance to Yeast and Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 2871.	4.1	51
12	Water-deficit responsive microRNAs in the primary root growth zone of maize. BMC Plant Biology, 2019, 19, 447.	3.6	18
13	Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signaling and Behavior, 2019, 14, 1663112.	2.4	31
14	Analysis of microRNAs, phased small interfering RNAs and their potential targets in Rosarugosa Thunb BMC Genomics, 2019, 19, 983.	2.8	13
15	Comparative Water Relations of Two Contrasting Date Palm Genotypes under Salinity. International Journal of Agronomy, 2019, 2019, 1-16.	1.2	16
16	An improved method of constructing degradome library suitable for sequencing using Illumina platform. Plant Methods, 2019, 15, 134.	4.3	4
17	Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. BMC Genomics, 2018, 19, 935.	2.8	66
18	Genotype- and tissue-specific miRNA profiles and their targets in three alfalfa (Medicago sativa L) genotypes. BMC Genomics, 2018, 19, 913.	2.8	27

RAMANJULU SUNKAR

#	ARTICLE	IF	CITATIONS
19	MicroRNAs, tasiRNAs, phasiRNAs, and Their Potential Functions in Pineapple. Plant Genetics and Genomics: Crops and Models, 2018, , 167-182.	0.3	1
20	Genome-wide identification and comprehensive analysis of microRNAs and phased small interfering RNAs in watermelon. BMC Genomics, 2018, 19, 111.	2.8	14
21	Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics, 2017, 18, 246.	2.8	80
22	MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress. Physiology and Molecular Biology of Plants, 2017, 23, 291-300.	3.1	13
23	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
24	Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Scientific Reports, 2017, 7, 9418.	3.3	21
25	Determining Glutathione Levels in Plants. Methods in Molecular Biology, 2017, 1631, 273-277.	0.9	28
26	ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants. Methods in Molecular Biology, 2017, 1631, 139-149.	0.9	2
27	Isolation of Polysomal RNA for Analyzing Stress-Responsive Genes Regulated at the Translational Level in Plants. Methods in Molecular Biology, 2017, 1631, 151-161.	0.9	2
28	Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Scientia Horticulturae, 2017, 225, 134-140.	3.6	13
29	Small RNAs: regulators of plant development and climate resilience. Indian Journal of Plant Physiology, 2017, 22, 369-370.	0.8	3
30	MicroRNA expression profiles in the emerging tillers and inflorescence of switchgrass, a major feedstock for biofuel production. Indian Journal of Plant Physiology, 2017, 22, 558-565.	0.8	4
31	Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants. Methods in Molecular Biology, 2017, 1631, 221-227.	0.9	6
32	Identification of Reference Genes for Quantitative Real-Time PCR in Date Palm (Phoenix dactylifera L.) Subjected to Drought and Salinity. PLoS ONE, 2016, 11, e0166216.	2.5	24
33	Small RNA profiles in soybean primary root tips under water deficit. BMC Systems Biology, 2016, 10, 126.	3.0	33
34	Identification of microRNAs, phasiRNAs and Their Targets in Pineapple. Tropical Plant Biology, 2016, 9, 176-186.	1.9	32
35	Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Science, 2016, 242, 214-223.	3.6	81

 $_{36}$ A genome-wide identification of the miRNA ome in response to salinity stress in date palm (Phoenix) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
37	Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. BMC Genomics, 2015, 16, 423.	2.8	49
38	High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Plant Science, 2015, 235, 46-57.	3.6	53
39	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
40	Nutrient- and other stress-responsive microRNAs in plants: Role for thiol-based redox signaling. Plant Signaling and Behavior, 2015, 10, e1010916.	2.4	11
41	Genome-Wide Discovery and Analysis of Phased Small Interfering RNAs in Chinese Sacred Lotus. PLoS ONE, 2014, 9, e113790.	2.5	28
42	Global and local perturbation of the tomato microRNA pathway by atrans-activatedDICER-LIKE 1mutant. Journal of Experimental Botany, 2014, 65, 725-739.	4.8	27
43	Sex specific expression and distribution of small RNAs in papaya. BMC Genomics, 2014, 15, 20.	2.8	28
44	Redox signaling mediates the expression of a sulfateâ€deprivationâ€inducible micro <scp>RNA</scp> 395 in <scp>A</scp> rabidopsis. Plant Journal, 2014, 77, 85-96.	5.7	82
45	Identification of conserved and novel microRNAs in Manduca sexta and their possible roles in the expression regulation of immunity-related genes. Insect Biochemistry and Molecular Biology, 2014, 47, 12-22.	2.7	50
46	Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiology and Molecular Biology of Plants, 2014, 20, 57-67.	3.1	14
47	Dynamic Regulation of Novel and Conserved miRNAs Across Various Tissues of Diverse Cucurbit Species. Plant Molecular Biology Reporter, 2013, 31, 335-343.	1.8	6
48	Genome-Wide Analysis of MicroRNAs in Sacred Lotus, Nelumbo nucifera (Gaertn). Tropical Plant Biology, 2013, 6, 117-130.	1.9	25
49	Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 2013, 14, R41.	9.6	329
50	Global Identification of Small RNA Targets in Plants by Sequencing Sliced Ends of Messenger RNAs. Methods in Molecular Biology, 2013, 956, 119-129.	0.9	6
51	Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. Plant Science, 2013, 203-204, 17-24.	3.6	53
52	SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Research, 2012, 40, e28-e28.	14.5	94
53	microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. Plant Signaling and Behavior, 2012, 7, 484-491.	2.4	34
54	Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17, 196-203.	8.8	900

#	Article	IF	CITATIONS
55	Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta. Insect Biochemistry and Molecular Biology, 2012, 42, 381-395.	2.7	58
56	Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics, 2012, 13, 329.	2.8	72
57	<i>Cucumis melo</i> MicroRNA Expression Profile During Aphid Herbivory in a Resistant and Susceptible Interaction. Molecular Plant-Microbe Interactions, 2012, 25, 839-848.	2.6	51
58	Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics, 2012, 13, 682.	2.8	41
59	Expression of Small RNA in Aphis gossypii and Its Potential Role in the Resistance Interaction with Melon. PLoS ONE, 2012, 7, e48579.	2.5	40
60	Role of microRNAs in Plant Adaptation to Environmental Stresses. Signaling and Communication in Plants, 2012, , 219-232.	0.7	5
61	Highâ€ŧhroughput sequence analysis of small <scp>RNA</scp> s in grapevine (<i><scp>V</scp>itis) Tj ETQq1 1060-1076.</i>	1 0.784314 4.2	rgBT /Overloc 74
62	Overexpression of miR156 in switchgrass (<i>Panicum virgatum</i> L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 2012, 10, 443-452.	8.3	293
63	Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics, 2011, 98, 460-468.	2.9	88
64	Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2010, 10, 187-190.	3.5	69
65	Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 2010, 11, 52.	2.8	178
66	Transcriptome-wide identification of microRNA targets in rice. Plant Journal, 2010, 62, 742-759.	5.7	370
67	Gene Regulation During Cold Stress Acclimation in Plants. Methods in Molecular Biology, 2010, 639, 39-55.	0.9	339
68	Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. Journal of Plant Physiology, 2010, 167, 896-904.	3.5	66
69	MicroRNAs with macro-effects on plant stress responses. Seminars in Cell and Developmental Biology, 2010, 21, 805-811.	5.0	240
70	Cloning of Stress-Responsive MicroRNAs and other Small RNAs from Plants. Methods in Molecular Biology, 2010, 639, 239-251.	0.9	9
71	Sliced microRNA targets and precise loop-first processing of <i>MIR319</i> hairpins revealed by analysis of the <i>Physcomitrella patens</i> degradome. Rna, 2009, 15, 2112-2121.	3.5	186
72	Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics, 2009, 10, 65.	2.8	94

#	Article	IF	CITATIONS
73	Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009, 229, 1009-1014.	3.2	366
74	Cloning and characterization of small RNAs from <i>Medicago truncatula</i> reveals four novel legumeâ€specific microRNA families. New Phytologist, 2009, 184, 85-98.	7.3	162
75	Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics, 2008, 9, 160.	2.8	283
76	Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008, 8, 25.	3.6	436
77	In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biology, 2008, 8, 37.	3.6	323
78	The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 743-748.	1.9	246
79	Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Research, 2008, 19, 70-78.	5.5	107
80	Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 2007, 12, 301-309.	8.8	872
81	Micro RNAs and Short-interfering RNAs in Plants. Journal of Integrative Plant Biology, 2007, 49, 817-826.	8.5	80
82	Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance. Plant Cell, 2006, 18, 2051-2065.	6.6	1,118
83	Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Molecular Biology, 2005, 57, 315-332.	3.9	128
84	Cloning and Characterization of MicroRNAs from Rice. Plant Cell, 2005, 17, 1397-1411.	6.6	462
85	Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Research, 2005, 33, 4443-4454.	14.5	92
86	Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell, 2005, 123, 1279-1291.	28.9	999
87	Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 2005, 24, 23-58.	5.7	2,081
88	Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis[W]. Plant Cell, 2004, 16, 2001-2019.	6.6	1,787
89	Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal, 2003, 35, 452-464.	5.7	380
90	Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant Journal, 2000, 24, 533-542.	5.7	173

#	Article	IF	CITATIONS
91	A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant Journal, 1999, 20, 171-182.	5.7	288