Rai-Shung Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358895/publications.pdf

Version: 2024-02-01

175	8,935	50	86
papers	citations	h-index	g-index
185	185	185	4311 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 2018, 12, 235-240.	31.4	669
2	Carbocyclisation of alkynes with external nucleophiles catalysed by gold, platinum and other electrophilic metals. Chemical Society Reviews, 2009, 38, 2269.	38.1	410
3	Recent Advances in Goldâ€Catalyzed N―and Oâ€Functionalizations of Alkynes with Nitrones, Nitroso, Nitro and Nitroxy Species. Advanced Synthesis and Catalysis, 2016, 358, 1348-1367.	4.3	242
4	Nitrene Transfer and Carbene Transfer in Gold Catalysis. Chemical Reviews, 2021, 121, 9039-9112.	47.7	241
5	Goldâ€Catalyzed Oxidative Cyclization of 1,5â€Enynes Using External Oxidants. Angewandte Chemie - International Edition, 2011, 50, 6911-6914.	13.8	237
6	Goldâ€Catalyzed Oxidative Ring Expansions and Ring Cleavages of Alkynylcyclopropanes by Intermolecular Reactions Oxidized by Diphenylsulfoxide. Angewandte Chemie - International Edition, 2010, 49, 9891-9894.	13.8	218
7	Gold-Catalyzed 1,2-Difunctionalizations of Aminoalkynes Using Only N- and O-Containing Oxidants. Journal of the American Chemical Society, 2011, 133, 15372-15375.	13.7	190
8	Gold-Catalyzed Formal $[3+3]$ and $[4+2]$ Cycloaddition Reactions of Nitrosobenzenes with Alkenylgold Carbenoids. Journal of the American Chemical Society, 2011, 133, 20728-20731.	13.7	177
9	Goldâ€Catalyzed Oxidative Cyclizations of <i>cis</i> àê3â€Enâ€1â€ynes To Form Cyclopentenone Derivatives. Angewandte Chemie - International Edition, 2012, 51, 2939-2942.	13.8	166
10	Gold-catalyzed synthesis of substituted 2-aminofurans via formal [4+1]-cycloadditions on 3-en-1-ynamides. Chemical Communications, 2012, 48, 7200.	4.1	140
11	Gold-Catalyzed 1,3-Addition of a sp ³ -Hybridized Câ^'H Bond to Alkenylcarbenoid Intermediate. Journal of the American Chemical Society, 2008, 130, 16488-16489.	13.7	139
12	Gold-Catalyzed Intramolecular $[3+2]$ -Cycloaddition of Arenyne-Yne Functionalities. Journal of the American Chemical Society, 2006, 128, 11372-11373.	13.7	135
13	Gold atalyzed Intermolecular [4+2] and [2+2+2] Cycloadditions of Ynamides with Alkenes. Angewandte Chemie - International Edition, 2012, 51, 113-117.	13.8	129
14	Gold-Catalyzed Stereoselective Synthesis of Azacyclic Compounds through a Redox/ $[2 + 2 + 1]$ Cycloaddition Cascade of Nitroalkyne Substrates. Journal of the American Chemical Society, 2011, 133, 1769-1771.	13.7	127
15	Development of Goldâ€catalyzed [4+1] and [2+2+1]/[4+2] Annulations between Propiolate Derivatives and Isoxazoles. Angewandte Chemie - International Edition, 2017, 56, 1026-1030.	13.8	126
16	Development of a Povarov Reaction/Carbene Generation Sequence for Alkenyldiazocarbonyl Compounds. Angewandte Chemie - International Edition, 2012, 51, 11809-11813.	13.8	121
17	Diversity in Goldâ€Catalyzed Formal Cycloadditions of Ynamides with Azidoalkenes or 2 <i>H</i> â€Azirines: [3+2] versus [4+3] Cycloadditions. Chemistry - A European Journal, 2015, 21, 10843-10850.	3.3	120
18	Gold atalyzed Formal Cycloaddition of 2â€Ethynylbenzyl Ethers with Organic Oxides and αâ€Diazoesters. Angewandte Chemie - International Edition, 2013, 52, 7559-7563.	13.8	118

#	Article	IF	CITATIONS
19	Goldâ€Catalyzed Cycloaddition Reactions of Ethyl Diazoacetate, Nitrosoarenes, and Vinyldiazo Carbonyl Compounds: Synthesis of Isoxazolidine and Benzo[<i>b</i>]azepine Derivatives. Angewandte Chemie - International Edition, 2015, 54, 4923-4926.	13.8	110
20	Goldâ€Catalyzed [4+2] Annulation/Cyclization Cascades of Benzisoxazoles with Propiolate Derivatives to Access Highly Oxygenated Tetrahydroquinolines. Angewandte Chemie - International Edition, 2017, 56, 12736-12740.	13.8	100
21	Gold-catalyzed [4+3]- and [4+2]-annulations of 3-en-1-ynamides with isoxazoles <i>via</i> novel 6Ï€-electrocyclizations of 3-azahepta trienyl cations. Chemical Science, 2018, 9, 2991-2995.	7.4	97
22	Goldâ€Catalyzed Oxidative Cyclizations on 1,4â€Enynes: Evidence for a γâ€Substituent Effect on Wagner–Meerwein Rearrangements. Angewandte Chemie - International Edition, 2013, 52, 4229-4234.	13.8	94
23	Gold-Catalyzed Hydrative Carbocyclization of 1,5- and 1,7-Allenynes Mediated by π-Allene Complex: Mechanistic Evidence Supported by the Chirality Transfer of Allenyne Substrates. Journal of Organic Chemistry, 2008, 73, 4907-4914.	3.2	90
24	Stereocontrolled Synthesis of Complicated Oxacyclic Compounds via Platinum-Catalyzed [4 + 2]-Cycloadditions and Annulations of Enynals with Allylic Alcohols. Journal of the American Chemical Society, 2009, 131, 2090-2091.	13.7	88
25	Gold-Catalyzed Stereocontrolled Oxacyclization/[4+2]-Cycloaddition Cascade of Ketone-Allene Substrates. Journal of the American Chemical Society, 2010, 132, 9298-9300.	13.7	87
26	Goldâ€Catalyzed 1,2â€Oxoarylations of Nitriles with Pyridineâ€Derived Oxides. Angewandte Chemie - International Edition, 2014, 53, 5444-5448.	13.8	85
27	Generation of Donor/Donor Copper Carbenes through Copper-Catalyzed Diyne Cyclization: Enantioselective and Divergent Synthesis of Chiral Polycyclic Pyrroles. Journal of the American Chemical Society, 2019, 141, 16961-16970.	13.7	84
28	Copper-Catalyzed Asymmetric Reaction of Alkenyl Diynes with Styrenes by Formal $[3 + 2]$ Cycloaddition via Cu-Containing All-Carbon 1,3-Dipoles: Access to Chiral Pyrrole-Fused Bridged $[2.2.1]$ Skeletons. Journal of the American Chemical Society, 2020, 142, 7618-7626.	13.7	83
29	Rutheniun-Catalyzed Cycloisomerization ofo-(Ethynyl)phenylalkenes to Diene Derivatives via Skeletal Rearrangement. Journal of the American Chemical Society, 2004, 126, 15560-15565.	13.7	77
30	The Skeletal Rearrangement of Gold- and Platinum-Catalyzed Cycloisomerization of ⟨i⟩cis⟨ i⟩-4,6-Dien-1-yn-3-ols:  Pinacol Rearrangement and Formation of Bicyclo[4.1.0]heptenone and Reorganized Styrene Derivatives. Journal of the American Chemical Society, 2007, 129, 15677-15683.	13.7	76
31	Ruthenium-Catalyzed Cycloisomerization ofcis-3-En-1-ynes to Cyclopentadiene and Related Derivatives through a 1,5-Sigmatropic Hydrogen Shift of Rutheniumâ^'Vinylidene Intermediates. Journal of the American Chemical Society, 2005, 127, 11606-11607.	13.7	75
32	Intermolecular Goldâ€Catalyzed Diastereo―and Enantioselective [2+2+3] Cycloadditions of 1,6â€Enynes with Nitrones. Angewandte Chemie - International Edition, 2012, 51, 7835-7838.	13.8	75
33	Gold-Catalyzed Deoxygenated Cyclization ofcis-2,4-Dien-1-als with Regioselective Addition of Two Nucleophiles. One-Pot Synthesis of Highly Functionalized Cyclopentene Framework. Journal of the American Chemical Society, 2007, 129, 3798-3799.	13.7	74
34	Ruthenium-Catalyzed Cyclization of 2-Alkyl-1-ethynylbenzenes via a 1,5-Hydrogen Shift of Rutheniumâ [*] Vinylidene Intermediates. Journal of Organic Chemistry, 2007, 72, 3289-3292.	3.2	74
35	Gold-Catalyzed [5+2]- and [5+1]-Annulations between Ynamides and 1,2-Benzisoxazoles with Ligand-Controlled Chemoselectivity. ACS Catalysis, 2018, 8, 9697-9701.	11.2	71
36	Copperâ€Catalyzed Azide–Ynamide Cyclization to Generate αâ€Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic Nâ€Heterocycles. Angewandte Chemie - International Edition, 2020, 59, 17984-17990.	13.8	71

#	Article	IF	Citations
37	Retention of Stereochemistry in Goldâ€Catalyzed Formal [4+3] Cycloaddition of Epoxides with Arenynamides. Angewandte Chemie - International Edition, 2012, 51, 8722-8726.	13.8	70
38	Gold-catalyzed annulations of <i>N</i> -aryl ynamides with benzisoxazoles to construct 6 <i>H</i> -indolo[2,3- <i>b</i>]quinoline cores. Chemical Communications, 2018, 54, 10866-10869.	4.1	69
39	Platinum-Catalyzed Oxoarylations of Ynamides with Nitrones. Organic Letters, 2012, 14, 5522-5525.	4.6	65
40	Synthesis of Heterocyclic and Carbocyclic Compounds via Alkynyl, Allyl, and Propargyl Organometallics of Cyclopentadienyl Iron, Molybdenum, and Tungsten Complexes. Chemical Reviews, 2000, 100, 3127-3162.	47.7	62
41	Gold-catalyzed (4 \pm 2)-annulations between $\hat{l}\pm$ -alkyl alkenylgold carbenes and benzisoxazoles with reactive alkyl groups. Chemical Science, 2018, 9, 4488-4492.	7.4	61
42	Gold-catalyzed (4+3)-annulations of 2-alkenyl-1-alkynylbenzenes with anthranils with alkyne-dependent chemoselectivity: skeletal rearrangement <i>versus</i> non-rearrangement. Chemical Science, 2019, 10, 1201-1206.	7.4	59
43	Gold-Catalyzed Stereoselective Synthesis of 9-Oxabicyclo [3.3.1] nona-4,7-dienes from Diverse 1-Oxo-4-oxy-5-ynes: A Viable Formal $[4+2]$ Cycloaddition on an <i>><$i><-i>>trans-Heterodiene Framework. Journal of the American Chemical Society, 2010, 132, 12565-12567.$</i>	13.7	58
44	Sulfonamide-directed gold-catalyzed [2+2+2]-cycloadditions of nitriles with two discrete ynamides to construct 2,4-diaminopyridine cores. Chemical Communications, 2016, 52, 3187-3190.	4.1	57
45	Gold-Catalyzed [4 + 1]-Annulation Reactions between 1,4-Diyn-3-ols and Isoxazoles To Construct a Pyrrole Core. Organic Letters, 2018, 20, 3806-3809.	4.6	56
46	Tungsten(II) \hat{a} Carbene Complex Functions as a Dicationic Synthon: \hat{A} Efficient Constructions of Furan and Pyran Frameworks from Readily Available \hat{I}_{\pm} , \hat{I}_{\pm} - and \hat{I}_{\pm} , \hat{I}_{μ} -Alkynols. Journal of the American Chemical Society, 1997, 119, 4404-4412.	13.7	55
47	Catalytic Transformations of Alkynes into either αâ€Alkoxy or αâ€Aryl Enolates: Mannich Reactions by Cooperative Catalysis and Evidence for Nucleophileâ€Directed Chemoselectivity. Angewandte Chemie - International Edition, 2018, 57, 14878-14882.	13.8	54
48	Gold-catalyzed isomerization of unactivated allenes into 1,3-dienes under ambient conditions. Chemical Communications, 2012, 48, 6577.	4.1	53
49	Goldâ€Catalyzed Cyclization/Oxidative [3+2]â€Cycloadditions of 1,5â€Enynes with Nitrosobenzenes without Additional Oxidants. Angewandte Chemie - International Edition, 2013, 52, 4599-4603.	13.8	52
50	Gold(I)â€Catalyzed Highly Diastereo―and Enantioselective Cyclization–[4+3] Annulation Cascades between 2â€(1â€Alkynyl)â€2â€alkenâ€1â€ones and Anthranils. Angewandte Chemie - International Edition, 2020 10396-10400.), <u>15</u> :9\$	52
51	Gold―and Silverâ€Catalyzed [4+2] Cycloadditions of Ynamides with Oxetanes and Azetidines. Advanced Synthesis and Catalysis, 2014, 356, 2411-2416.	4.3	47
52	Generation of Endocyclic Vinyl Carbene Complexes via Gold-Catalyzed Oxidative Cyclization of Terminal Diynes: Toward Naphthoquinones and Carbazolequinones. ACS Catalysis, 2019, 9, 1019-1025.	11.2	46
53	Zinc(II)â€Catalyzed Intermolecular Hydrative Aldol Reactions of 2â€Enâ€1â€ynamides with Aldehydes and Water to form Branched Aldol Products Regio†and Stereoselectively. Angewandte Chemie - International Edition, 2015, 54, 3812-3816.	13.8	45
54	Copperâ€Catalyzed Threeâ€Component Annulations of Alkenes, Nitrosoarenes, and Nâ€Hydroxyallylamines To Form Fused Oxazinane/Isoxazolidine Heterocycles. Angewandte Chemie - International Edition, 2017, 56, 2035-2039.	13.8	45

#	Article	IF	CITATIONS
55	Goldâ€Catalyzed Annulations of <i>N</i> àêPropargyl Ynamides with Anthranils with Two Distinct Chemoselectivities. Chemistry - A European Journal, 2019, 25, 5288-5297.	3.3	45
56	Total Synthesis of (+)-Blastmycinone, (â^')-Litsenolide C1, and Related Natural Trisubstituted Lactones via Alkynyltungsten Compounds. Journal of Organic Chemistry, 2000, 65, 6362-6367.	3.2	44
57	High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode. ACS Applied Materials & Diverfaces, 2017, 9, 14998-15004.	8.0	43
58	Development of Goldâ€catalyzed [4+1] and [2+2+1]/[4+2] Annulations between Propiolate Derivatives and Isoxazoles. Angewandte Chemie, 2017, 129, 1046-1050.	2.0	42
59	A Novel Stereocontrolled Synthesis of Cis-Fused Bicyclic Lactams via [3 + 2]-Cycloaddition of Alkynyltungsten Complexes with Tethered Aziridines. Organic Letters, 2002, 4, 4151-4153.	4.6	41
60	Gold-Catalyzed [4+3]-Annulation of Oxabicyclic Benzenes with 2-Substituted Allylsilanes through Tandem Allylation and Cyclization. Organic Letters, 2008, 10, 521-524.	4.6	41
61	Gold-catalyzed diastereoselective [2+2+2]-cycloaddition of 1,7-enynes with carbonyl compounds. Chemical Communications, 2012, 48, 10975.	4.1	41
62	Gold atalyzed Oxidative Cycloadditions to Activate a Quinoline Framework. Chemistry - A European Journal, 2013, 19, 12965-12969.	3.3	41
63	Goldâ€catalyzed Intermolecular Oxidations of 2â€Ketonylâ€1â€ethynyl Benzenes with Nâ€Hydoxyanilines to Yield 2â€Aminoindenones via Gold Carbene Intermediates. Angewandte Chemie - International Edition, 2016, 55, 11892-11896.	13.8	41
64	Oxidant-Dependent Chemoselectivity in the Gold-Catalyzed Oxidative Cyclizations of 3,4,6,6-Tetrasubstituted 3,5-Dien-1-ynes. Journal of Organic Chemistry, 2013, 78, 7970-7976.	3.2	39
65	Gold-catalyzed formal [4Ï€ + 2Ï€]-cycloadditions of propiolate derivatives with unactivated nitriles. Chemical Science, 2015, 6, 5964-5968.	7.4	38
66	Highly efficient deep-blue organic electroluminescent devices doped with hexaphenylanthracene fluorophores. Journal of Materials Chemistry, 2011, 21, 8122.	6.7	37
67	Gold-Catalyzed Reactions between Alkenyldiazo Carbonyl Species and Acetals. Journal of Organic Chemistry, 2013, 78, 5711-5716.	3.2	37
68	Gold-catalyzed oxidative couplings of two indoles with one aryldiazo cyanide under oxidant-free conditions. Chemical Communications, 2017, 53, 4593-4596.	4.1	37
69	Copperâ€Catalyzed Cascade Cyclization of Indolyl Homopropargyl Amides: Stereospecific Construction of Bridged Azaâ€[<i>n</i> .2.1] Skeletons. Angewandte Chemie - International Edition, 2019, 58, 9632-9639.	13.8	37
70	Synthesis of Natural α-Methylene Butyrolactones via Tungstenâ^'Ï€-Allyl Complexes. Total Synthesis of (â^')-Methylenolactocin. Journal of Organic Chemistry, 1998, 63, 9122-9124.	3.2	36
71	Goldâ€Catalyzed Intramolecular [3+2] Cycloadditions of 1â€Arylâ€1â€alleneâ€6â€enes. Chemistry - A European Journal, 2009, 15, 8895-8901.	3.3	36
72	Gold-catalyzed N,O-functionalization of 1,4-diyn-3-ols with <i>N</i> -hydroxyanilines to form highly functionalized pyrrole derivatives. Chemical Communications, 2018, 54, 2114-2117.	4.1	35

#	Article	IF	CITATIONS
73	[3+2]-Annulations of <i>N</i> -Hydroxy Allenylamines with Nitrosoarenes: One-Pot Synthesis of Substituted Indole Products. Organic Letters, 2016, 18, 412-415.	4.6	34
74	Gold-catalyzed bicyclic annulations of 4-methoxy-1,2-dienyl-5-ynes with isoxazoles to form indolizine derivatives <i>via</i> an Au-Ï€-allene intermediate. Chemical Science, 2019, 10, 6437-6442.	7.4	34
7 5	Goldâ€catalyzed [4+2]â€Annulations of Dienes with Nitrosoarenes as 4 π Donors: Nitrosoâ€Povarov Reactions. Angewandte Chemie - International Edition, 2019, 58, 9831-9835.	13.8	34
76	Alkeneâ€Directed <i>N</i> à€Attack Chemoselectivity in the Goldâ€Catalyzed [2+2+1]â€Annulations of 1,6â€Eny with <i>N</i> à6Hydroxyanilines. Angewandte Chemie - International Edition, 2015, 54, 14924-14928.	nes 13.8	33
77	Goldâ€Catalyzed Imination/Mannich Reaction Cascades of 3â€Enâ€1â€ynamides with Anilines and Aldehydes to Enable 1,5â€Nitrogen Functionalizations. Advanced Synthesis and Catalysis, 2016, 358, 1421-1427.	4.3	32
78	Gold atalyzed [4+2] Annulation/Cyclization Cascades of Benzisoxazoles with Propiolate Derivatives to Access Highly Oxygenated Tetrahydroquinolines. Angewandte Chemie, 2017, 129, 12910-12914.	2.0	32
79	Gold(I)-Catalyzed Highly Enantioselective [4 + 2]-Annulations of Cyclopentadienes with Nitrosoarenes via Nitroso-Povarov versus Oxidative Nitroso-Povarov Reactions. ACS Catalysis, 2020, 10, 5840-5845.	11.2	32
80	Catalytic Formal [4 + 2] Cycloadditions between Unactivated Allenes and N-Hydroxyaniline Catalyzed by AuCl3/CuCl2/O2. Journal of Organic Chemistry, 2014, 79, 4306-4311.	3.2	30
81	Gold-Catalyzed Michael-Type Reactions and [4 + 2]-Annulations between Propiolates and 1,2-Benzisoxazoles with Ester-Directed Chemoselectivity. Organic Letters, 2018, 20, 6655-6658.	4.6	30
82	Synthesis of nitrogen-containing molecules via transition metal-catalyzed reactions on isoxazoles, anthranils and benzoisoxazoles. Advances in Organometallic Chemistry, 2020, 73, 195-251.	1.0	30
83	Ruthenium-Catalyzed Transformation of Aryl and Alkynyl Propargyl Ethers into Aryl and Alkynyl Ketones via Cleavage of a Carbonâ-'Carbon Triple Bond. Organometallics, 2004, 23, 4332-4334.	2.3	29
84	Goldâ€Catalyzed Carboalkoxylations of 2â€Ethynylbenzyl Ethers to form 1―and 2â€Indanones Chemoselectively: Effects of Ligands and Solvents. Advanced Synthesis and Catalysis, 2014, 356, 144-152.	4.3	28
85	Gold-catalyzed [4+3] and [4+4]-annulation reactions of t-butyl propiolate derivatives with epoxides and oxetanes for the construction of 1,4-dioxepane and 1,5-dioxocane cores. Chemical Communications, 2016, 52, 7482-7485.	4.1	28
86	Gold-catalyzed 1,2-iminonitronation of electron-deficient alkynes with nitrosoarenes to afford \hat{l}_{\pm} -imidoyl nitrones. Chemical Communications, 2014, 50, 15864-15866.	4.1	27
87	Gold-Catalyzed Oxidative Cyclization of 4-Allenyl-1-ynes with 8-Methylquinoline Oxide. Organic Letters, 2013, 15, 4094-4097.	4.6	26
88	Gold-catalyzed [4+1]-annulation reactions between anthranils and 4-methoxy-1,2-dienyl-5-ynes involving a 1,2-allene shift. Chemical Communications, 2019, 55, 1979-1982.	4.1	26
89	Gold-catalyzed reactions of propargylic esters with vinylazides for the synthesis of Z- or E-configured buta-1,3-dien-2-yl esters. Chemical Communications, 2015, 51, 15462-15464.	4.1	25
90	Gold-catalyzed [3+2]-annulations of $\hat{l}\pm$ -aryl diazonitriles with ynamides and allenamides to yield 1-amino-1H-indenes. Chemical Communications, 2016, 52, 11434-11437.	4.1	24

#	Article	IF	Citations
91	Silverâ€Catalyzed Stereoselective [3+2] Cycloadditions of Cyclopropylâ€Indanimines with Carbonyl Compounds. Advanced Synthesis and Catalysis, 2013, 355, 1545-1552.	4.3	23
92	Gold-catalyzed formal $[4\ddot{l} \in +2\ddot{l} \in]$ -cycloadditions of tert-butyl propiolates with aldehydes and ketones to form 4H-1,3-dioxine derivatives. Chemical Communications, 2015, 51, 13004-13007.	4.1	23
93	Gold atalyzed Oxidative [2+2+1] Annulations of Aryldiazo Nitriles with Imines To Yield Polyarylated Imidazolium Salts. Angewandte Chemie - International Edition, 2017, 56, 5035-5039.	13.8	23
94	Gold-Catalyzed Oxidative Arylations of 3-Butyn-1-ols and 2-Propyn-1-ols with Nitrones to Yield Distinct Fused Indoles Bearing a Heterocyclic Ring. ACS Catalysis, 2019, 9, 5890-5896.	11.2	23
95	Ground-state dioxygen undergoes metal-free [3 + 2]-annulations with allenes and nitrosoarenes under ambient conditions. Chemical Science, 2017, 8, 5482-5487.	7.4	22
96	Goldâ€Catalyzed Bicyclic Annulations of 2â€Alkynylbenzaldehydes with Vinyldiazo Carbonyls that Serve as Fiveâ€atom Building Units. Angewandte Chemie - International Edition, 2019, 58, 10980-10984.	13.8	22
97	Gold-Catalyzed Oxidations of 1,3-Diynamides with $C(1)$ versus $C(3)$ Regioselectivity: Catalyst-Dependent Oxidative Cyclizations in the $C(3)$ Oxidation. Organic Letters, 2020, 22, 4478-4482.	4.6	22
98	Silverâ€Catalyzed <i>exo</i> â€ <i>dig</i> â€Azacyclization/[3+2]â€%Cycloaddition Cascades on 1â€Tosylhydrazonâ€4â€oxyâ€5â€yne Substrates: Applicability to Diverse Alkenes. Advanced Synthesis and Catalysis, 2011, 353, 1877-1882.	4.3	21
99	Gold atalyzed Oxidative [2+2+1] Annulations of Aryldiazo Nitriles with Imines To Yield Polyarylated Imidazolium Salts. Angewandte Chemie, 2017, 129, 5117-5121.	2.0	21
100	Gold-Catalyzed <i>N</i> , <i>O</i> -Functionalizations of 6-Allenyl-1-ynes with <i>N</i> -Hydroxyanilines To Construct Benzo[<i>b</i> -azepin-4-one Cores. Organic Letters, 2017, 19, 5340-5343.	4.6	21
101	Direct access to benzofuro[2,3- <i>b</i>)quinoline and 6 <i>H</i> -chromeno[3,4- <i>b</i>)quinoline cores through gold-catalyzed annulation of anthranils with arenoxyethynes and aryl propargyl ethers. Organic and Biomolecular Chemistry, 2019, 17, 4452-4455.	2.8	21
102	Access to molecular complexity via gold- and platinum-catalyzed cascade reactions. Pure and Applied Chemistry, 2012, 84, 1749-1757.	1.9	20
103	Copperâ€Catalyzed Oxidative Dimerizations of 3â€ <i>N</i> â€Hydroxyâ€aminopropâ€1â€enes to form 1,4â€Dihydroxyâ€2,3â€diaminocyclohexanes with <i>C</i> ksub>2â€Symmetry. Angewandte Chemie - International Edition, 2014, 53, 12885-12888.	13.8	20
104	Cuâ€Catalyzed Aerobic Oxidative Cyclizations of 3â€ <i>N</i> à€Hydroxyaminoâ€1,2â€propadienes with Alcohols Thiols, and Amines To Form αâ€ <i>O</i> à6; <i>S</i> à6; and <i>N</i> à66ubstituted 4â€Methylquinoline Derivative Chemistry - A European Journal, 2015, 21, 4590-4594.		20
105	Copper-Catalyzed [4+2]-Cycloadditions of Isoxazoles with 2-Alkynylbenzaldehydes To Access Distinct α-Carbonylnaphthalene Derivatives: C(3,4)- versus C(4,5)-Regioselectivity at Isoxazoles. ACS Catalysis, 2019, 9, 7328-7334.	11.2	20
106	Gold-Catalyzed Oxidation of Thioalkynes To Form Phenylthio Ketene Derivatives via a Noncarbene Route. Organic Letters, 2019, 21, 5475-5479.	4.6	20
107	Gold-Catalyzed Oxidative Hydrative Alkenylations of Propargyl Aryl Thioethers with Quinoline <i>N</i> -Oxides Involving a 1,3-Sulfur Migration. Organic Letters, 2019, 21, 2755-2758.	4.6	20
108	Gold(I)-Catalyzed Reactions between 2-(1-Alkynyl)-2-alken-1-ones and Vinyldiazo Ketones for Divergent Synthesis of Nonsymmetric Heteroaryl-Substituted Triarylmethanes: <i>N-</i> versus <i>C</i> Attack Paths. Organic Letters, 2020, 22, 8229-8233.	4.6	20

#	Article	IF	CITATIONS
109	Copperâ€Mediated [3+2] Annulation of 3â€ <i>N</i> àêHydroxyallylamines with Nitrosoarenes. Chemistry - A European Journal, 2016, 22, 2915-2919.	3.3	19
110	Goldâ€Catalyzed 1,4â€Carbooxygenation of 3â€Enâ€1â€ynamides with Allylic and Propargylic Alcohols <i>via</i> Nonâ€Claisen Pathways. Advanced Synthesis and Catalysis, 2017, 359, 590-596.	4.3	19
111	Stereoselective annulation between an allene, an alkene, and two nitrosoarenes to access bis(isoxazoliodine) derivatives. Organic and Biomolecular Chemistry, 2017, 15, 9389-9397.	2.8	19
112	A Sequential Route to Cyclopentenes from 1,6â€Enynes and Diazo Ketones through Gold and Rhodium Catalysis. Advanced Synthesis and Catalysis, 2017, 359, 402-409.	4.3	18
113	Gold-catalyzed oxidative cycloalkenations of alkynes with quinoline $\langle i \rangle N \langle i \rangle$ -oxides. Organic Chemistry Frontiers, 2019, 6, 226-230.	4.5	18
114	Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Constructions of Bicyclo[3.2.1]oct-6-ene Frameworks via (4 + 3)-Cycloadditions. ACS Catalysis, 2022, 12, 536-543.	11.2	18
115	Siloxy Effect on Intramolecular Cyclization of Tungstenâ^'Î-1-Siloxypropargyl Complexes: Formation of 2,5-Dihydrofurans versus γ-Lactones. Organometallics, 1997, 16, 3987-3992.	2.3	17
116	Goldâ€Catalyzed [3+2]â€Annulations of αâ€Aryl Diazoketones with the Tetrasubstituted Alkenes of Cyclopentadienes: High Stereoselectivity and Enantioselectivity. Angewandte Chemie - International Edition, 2021, 60, 4479-4484.	13.8	17
117	Synthesis of oxygen heterocycles via alkynyltungsten compounds. Pure and Applied Chemistry, 2001, 73, 265-269.	1.9	16
118	Goldâ€Catalyzed Cyclization–Cycloaddition Cascade Reactions of Allenyl Acetals with Nitrones. Chemistry - A European Journal, 2012, 18, 13638-13641.	3.3	16
119	A 1,3-carbonyl shift in the platinum-catalyzed aromatization of 2-epoxy-1-(methoxyalk-2-ynyl)benzenes. Chemical Communications, 2010, 46, 4601.	4.1	15
120	Synthesis of planar dibenzo[de,op]bistetracene derivatives for organic field-effect transistor applications: substituent effect on crystal packing and charge transport property. Journal of Materials Chemistry C, 2015, 3, 7583-7588.	5.5	15
121	Copperâ€Catalyzed Threeâ€Component Annulations of Alkenes, Nitrosoarenes, and Nâ€Hydroxyallylamines To Form Fused Oxazinane/Isoxazolidine Heterocycles. Angewandte Chemie, 2017, 129, 2067-2071.	2.0	15
122	Gold(I)-Catalyzed 1,3-Carbofunctionalizations of Anthranils with Vinyl Propargyl Esters To Yield 1,3-Dihydrobenzo [$\langle i \rangle c \langle j \rangle$]-isoxazoles. Organic Letters, 2019, 21, 2876-2879.	4.6	15
123	Goldâ€Catalyzed Iminations of Terminal Propargyl Alcohols with Anthranils with Atypical Chemoselectivity for C(1)â€Additions and 1,2â€Carbon Migration. Chemistry - A European Journal, 2020, 26, 3600-3608.	3.3	15
124	Copperâ€Catalyzed Aerobic Oxidations of 3â€N â€Hydoxyaminopropâ€1â€ynes to Form 3â€Substituted 3â€Aminoâ€2â€enâ€1â€ones: Oxidative Mannich Reactions with a Skeletal Rearrangement. Chemistry - A Europe Journal, 2014, 20, 13927-13931.	a n. 3	14
125	Gold(I)â€Catalyzed Highly Diastereo―and Enantioselective Cyclization–[4+3] Annulation Cascades between 2â€(1â€Alkynyl)â€2â€alkenâ€1â€ones and Anthranils. Angewandte Chemie, 2020, 132, 10482-10486.	2.0	14
126	Goldâ€catalyzed [4+3]â€Annulations of Benzopyriliums with Vinyldiazo Carbonyls to Form Bicyclic Heptatriene Rings with Skeletal Rearrangement. Advanced Synthesis and Catalysis, 2020, 362, 2517-2522.	4.3	14

#	Article	IF	CITATIONS
127	Gold-catalyzed annulations of allenes with N-hydroxyanilines to form indole derivatives with benzaldehyde as a promoter. Organic and Biomolecular Chemistry, 2014, 12, 737.	2.8	13
128	Two Distinct Cyclizations of 2-Propenyl-1-ethynyl Benzenes with Aryldiazo Esters Using Au and Rh/Au Catalysts Respectively. ACS Catalysis, 2016, 6, 7160-7166.	11.2	13
129	Gold-Catalyzed Synthesis of Chiral Cyclopentadienyl Esters via Chirality Transfer. Organic Letters, 2020, 22, 6500-6504.	4.6	13
130	Gold(I)-Catalyzed Reactions between $\langle i \rangle N \langle i \rangle - \langle i \rangle o \langle i \rangle - Alkynylphenyl\rangle$ imines and Vinyldiazo Ketones to Form 3-(Furan-2-ylmethyl)-1 $\langle i \rangle H \langle i \rangle - i \rangle H \langle$	4.6	13
131	Stereocontrolled Synthesis of Acyclic 1,3-Diols via Condensation of Tungstenâ^'syn-Ï€-Pentadienyl Complexes with Aldehydes. A New Prins Reaction vias-trans-Diene Cationic Intermediates. Journal of Organic Chemistry, 2001, 66, 1781-1786.	3.2	12
132	BrÃ,nsted Acids Enable Three Molecular Rearrangements of One 3-Alkylidene-2H-1,2-oxazine Molecule into Distinct Heterocyles. Organic Letters, 2018, 20, 1038-1041.	4.6	12
133	Two Distinct Ag(I)- and Au(I)-Catalyzed Olefinations between α-Diazo Esters and <i>N</i> -Boc-Derived Imines. Organic Letters, 2019, 21, 6452-6456.	4.6	12
134	Oxidative Carbonylation of Alkynyltungsten Compounds via Protonation with Triflic Acid. Organometallics, 1998, 17, 2683-2685.	2.3	11
135	Facile Synthesis of Oxa- and Azacyclic Dienes via Cycloalkenation of Alkynyltungsten Compounds. Stereoselective Construction of Tricyclic Furan and Pyran Derivatives via Intramolecular Dielsâ^'Alder Reaction. Journal of Organic Chemistry, 2000, 65, 3761-3766.	3.2	11
136	Goldâ€Catalyzed Synthesis of Bicyclo[3.2.0]heptenes <i>via</i> a Formal [3+2]/[2+2]â€Annulation of Allylsilane with 4â€Methoxybutâ€2â€ynâ€1â€ols. Advanced Synthesis and Catalysis, 2010, 352, 1605-1609.	4.3	11
137	WS ₂ /WSe ₂ Nanodot Composite Photodetectors for Fast and Sensitive Light Detection. ACS Applied Electronic Materials, 2021, 3, 4291-4299.	4.3	11
138	Goldâ€Catalyzed [4+2]―and [3+3]â€Annulations of Ynamides with 1â€Ynâ€3â€ols to Access Sixâ€Membered Carbocycles and Oxacycles <i>via</i> Three Distinct Cyclizations. Advanced Synthesis and Catalysis, 2017, 359, 3311-3318.	4.3	10
139	Catalytic Transformations of Alkynes into either αâ€Alkoxy or αâ€Aryl Enolates: Mannich Reactions by Cooperative Catalysis and Evidence for Nucleophileâ€Directed Chemoselectivity. Angewandte Chemie, 2018, 130, 15094-15098.	2.0	10
140	Goldâ€Catalyzed Aminoaromatizations of 1,2â€Bis(alkynyl)benzenes with Anthranils to Yield 1â€Aminoâ€2â€napthaldehyde Products. Advanced Synthesis and Catalysis, 2020, 362, 3183-3189.	4.3	10
141	Gold(I)-Catalyzed Oxidative 1,4-Additions of 3-En-1-ynamide with Nitrones via Carbon- versus Nitrogen-Addition Chemoselectivity. Organic Letters, 2021, 23, 1394-1399.	4.6	10
142	Stereocontrolled Synthesis of Functionalized Bicyclic α-Methylene Butyrolactones via Tungsten-Mediated Intramolecular Allylation of Aldehydes. Journal of Organic Chemistry, 1999, 64, 7552-7558.	3.2	9
143	Enantiocontrolled Construction of Tricyclic Furan Derivatives via an Asymmetric Dielsâ ⁻ 'Alder Reaction. Organic Letters, 2001, 3, 1295-1298.	4.6	9
144	Gold-Catalyzed Aromatizations of 3-Ene-5-siloxy-1,6-diynes with Nitrosoarenes To Enable 1,4-N,O-Functionalizations: One-Pot Construction of 4-Hydroxy-3-aminobenzaldehyde Cores. Organic Letters, 2019, 21, 8434-8438.	4.6	9

#	Article	IF	CITATIONS
145	Goldâ€eatalyzed [4+2]â€Annulations of Dienes with Nitrosoarenes as 4 π Donors: Nitrosoâ€Povarov Reactions. Angewandte Chemie, 2019, 131, 9936-9940.	2.0	9
146	Gold-catalyzed $[5 + 2]$ -annulations of 1,3-diyn-1-amides with anthranils bearing no C(6)-substituents. Organic Chemistry Frontiers, 2021, 8, 2563-2568.	4.5	9
147	Gold-Catalyzed Synthesis of Diaza-hexatrienes Via Diazo Attack at Vinylgold Carbenes: An Easy Access to 1 <i>H</i> -Pyrazolo[4,3- <i>b</i>)pyridine-5-ones. Organic Letters, 2021, 23, 5496-5500.	4.6	9
148	Goldâ€Catalyzed Oxidative Cyclizations of 2â€Oxiranylâ€1â€alkynylbenzenes for Diastereoselective Synthesis of Highly Substituted 2â€Hydroxyindanones. Advanced Synthesis and Catalysis, 2011, 353, 2589-2592.	4.3	8
149	Skeletal Rearrangement in the Zn ^{II} â€Catalyzed [4+2]â€Annulation of Disubstituted <i>N</i> â€Hydroxy Allenylamines with Nitrosoarenes to Yield Substituted 1,2â€Oxazinanâ€3â€one Derivatives. Chemistry - A European Journal, 2016, 22, 15881-15887.	3.3	8
150	Gold-Catalyzed Bicyclic Annulations of $\langle i \rangle N \langle i \rangle - (\langle i \rangle \circ \langle i \rangle - Alkynylphenyl)$ imines with $\hat{l}\pm - Diazo$ Esters to Form 5,6-Dihydroindolo [2,1- $\langle i \rangle$ a $\langle i \rangle$] isoquinolines. Organic Letters, 2022, 24, 2165-2169.	4.6	8
151	Gold atalyzed Bicyclic Annulations of 2â€Alkynylbenzaldehydes with Vinyldiazo Carbonyls that Serve as Fiveâ€atom Building Units. Angewandte Chemie, 2019, 131, 11096-11100.	2.0	7
152	Gold atalyzed Bicyclic and [3+2]â€Annulations of Internal Propargyl Alcohols with Nitrones and Imines To Yield to Two Distinct Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 525-531.	4.3	7
153	Synthesis, Protonation, and Electrophilic Alkylation of CpW(CO)2[î-3-2-(phenylethynyl)allyl]. Organometallics, 1996, 15, 1565-1571.	2.3	6
154	A Transition-Metalâ^î-4-Diene Cation Can Undergo Nucleophilic Addition at the Internal Carbon. Organometallics, 1998, 17, 1002-1003.	2.3	6
155	Dynamic Kinetic Resolution in Gold-Catalyzed (4 + 2)-Annulations between Alkynyl Benzaldehydes and Allenamides to Yield Enantioenriched All-Carbon Diarylalkylmethane Derivatives. Organic Letters, 2022, 24, 548-553.	4.6	6
156	Cycloaddition of Tungstenâ^η1-3-Furyl Compounds with Alkenes and Alkynes: Syntheses and Ring Cleavage of Tungstenâ^η1-Oxabicycloheptene and â^η1-Oxabicycloheptadiene Compounds. Organometallics, 1998, 17, 4206-4212.	2.3	5
157	Oxy Effects on the Platinumâ€Catalyzed Carbo―and Oxacyclizations of 2â€Oxiranylâ€1â€(1â€oxyalkâ€2â€ynyl) Advanced Synthesis and Catalysis, 2012, 354, 2241-2250.	benzenes. 4.3	5
158	Goldâ€catalyzed Intermolecular Oxidations of 2â€Ketonylâ€1â€ethynyl Benzenes with Nâ€Hydoxyanilines to Yielo 2â€Aminoindenones via Gold Carbene Intermediates. Angewandte Chemie, 2016, 128, 12071-12075.	l 2.0	5
159	Gold Catalysts Can Generate Nitrone Intermediates from a Nitrosoarene/Alkene Mixture, Enabling Two Distinct Catalytic Reactions: A Nitroso-Activated Cycloheptatriene/Benzylidene Rearrangement. Organic Letters, 2021, 23, 5506-5511.	4.6	5
160	Oneâ∈Pot Stereocontrolled Synthesis of Bicyclic Pyrrolidine Derivatives by a Platinumâ∈"Brønsted Acid Relay Cascade Reaction. ChemCatChem, 2015, 7, 2824-2825.	3.7	4
161	Development of a [2 + 2]-Nitroso/Alkene Cycloaddition Using Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Catalyst: Controlled Chemoselectivity of Two Equilibrating Isomeric Intermediates. Organic Letters, 2021, 23, 6246-6251.	4.6	4
162	WSe2/WS2 Heterobilayer Nonvolatile Memory Device with Boosted Charge Retention. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3467-3475.	8.0	4

#	Article	IF	CITATIONS
163	Stereocontrolled Synthesis of Tungstenâ^Ï€-Allyl Complexes Comprising Two Remoted Alcohols. Organometallics, 2000, 19, 4458-4462.	2.3	3
164	Goldâ€Catalyzed Oxidative Crossâ€Coupling Reactions among Two Distinct Arenes and One Gold Carbene with Phosphoric Acids as Cocatalysts. Advanced Synthesis and Catalysis, 2020, 362, 5658-5668.	4.3	3
165	Goldâ€Catalyzed [3+2]â€Annulations of αâ€Aryl Diazoketones with the Tetrasubstituted Alkenes of Cyclopentadienes: High Stereoselectivity and Enantioselectivity. Angewandte Chemie, 2021, 133, 4529-4534.	2.0	3
166	Gold-Catalyzed Rearrangement of α-Carbonyl Cyclopropanes to Form 3-(Cyclopenta-1,3-dien-1-ylmethyl)oxindoles via a Postulated 1,5-Enolate Shift. Organic Letters, 2022, 24, 5220-5225.	4.6	3
167	GOLD CATALYSIS ON TANDEM AND CASCADE REACTIONS. Catalytic Science Series, 2014, , 253-274.	0.0	2
168	Gold-catalyzed oxidative hydroacylation reactions of \hat{l}_{\pm} -iminoalkynes with aldehydes and O ₂ . Chemical Communications, 2017, 53, 6009-6012.	4.1	2
169	Goldâ€Catalyzed Oxidative Aminocyclizations of Propargyl Alcohols and Propargyl Amines to Form Two Distinct Azacyclic Products: Carbene Formation versus a 3,3â€Sigmatropic Shift of an Initial Intermediate. Chemistry - A European Journal, 2020, 26, 16932-16938.	3.3	2
170	Shear-Induced Uniaxial Assembly of Polyaromatic Monolayers. E-Journal of Surface Science and Nanotechnology, 2009, 7, 157-160.	0.4	2
171	Gold(I)-Catalyzed [4 + 2] Annulation between Arylynes and C,N-Diaryl Nitrones for Chemoselective Synthesis of Quinoline Scaffolds via Gold Acetylide Intermediates. Journal of Organic Chemistry, 2022, 87, 7097-7105.	3.2	2
172	Front Cover Picture: Recent Advances in Gold atalyzed N―and Oâ€Functionalizations of Alkynes with Nitrones, Nitroso, Nitro and Nitroxy Species (Adv. Synth. Catal. 9/2016). Advanced Synthesis and Catalysis, 2016, 358, 1345-1345.	4.3	1
173	Expression of Concern for "Chemoselectivities in the Platinum-Catalyzed Hydrative Carbocyclizations of Oxo-Alkyne-Nitrile Functionalities― Organic Letters, 2021, 23, 6182-6182.	4.6	0
174	Expression of Concern for "A Convenient Synthesis of Tetrabenzo[de,hi,mn,qr]naphthacene from Readily Available 1,2-Di(phenanthren-4-yl)ethyne― Journal of Organic Chemistry, 2021, 86, 10941-10941.	3.2	0
175	Expression of Concern for "Platinum-Catalyzed Aromatization of Enediynes via a C–H Bond Insertion of Tethered Alkanes― Organic Letters, 2021, 23, 6181-6181.	4.6	O