Sushil G Rane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358761/publications.pdf

Version: 2024-02-01

		687363	1058476	
17	1,902	13	14	
papers	citations	h-index	g-index	
17	17	17	2783	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	A distinct hypothalamus-to- \hat{l}^2 cell circuit modulates insulin secretion. Cell Metabolism, 2022, 34, 285-298.e7.	16.2	29
2	TGF- \hat{l}^2 Signaling in Pancreatic Islet \hat{l}^2 Cell Development and Function. Endocrinology, 2021, 162, .	2.8	24
3	Protection from \hat{l}^2 -cell apoptosis by inhibition of TGF- \hat{l}^2 /Smad3 signaling. Cell Death and Disease, 2020, 11, 184.	6.3	39
4	Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary \hat{l}^2 -Cell Dysfunction to Progressive Depletion of \hat{l}^2 -Cell Mass and Diabetes. Journal of Biological Chemistry, 2017, 292, 3841-3853.	3.4	41
5	Dietary fatty acids: Friends or foes?. Obesity, 2015, 23, 1329-1329.	3.0	1
6	Role of unique miRNAs in development of obesity and type 2 diabetes. FASEB Journal, 2012, 26, 563.1.	0.5	0
7	Feeding of probiotic formulation protects from obesity and diabetes. FASEB Journal, 2012, 26, 1155.4.	0.5	0
8	TGFâ $\hat{\in}\hat{i}^2$ /Smad3 signaling inhibition protects from obesity and diabetes through modulation of adipocyte biology. FASEB Journal, 2012, 26, 877.6.	0.5	0
9	RB regulates pancreas development by stabilizing Pdx1. EMBO Journal, 2011, 30, 1563-1576.	7.8	27
10	The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development (Cambridge), 2011, 138, 1903-1912.	2.5	41
11	Cdk4 Regulates Recruitment of Quiescent \hat{l}^2 -Cells and Ductal Epithelial Progenitors to Reconstitute \hat{l}^2 -Cell Mass. PLoS ONE, 2010, 5, e8653.	2.5	30
12	Transforming Growth Factor- \hat{l}^2 /Smad3 Signaling Regulates Insulin Gene Transcription and Pancreatic Islet \hat{l}^2 -Cell Function. Journal of Biological Chemistry, 2009, 284, 12246-12257.	3.4	138
13	Germ Line Transmission of the <i>Cdk4</i> ^{R24C} Mutation Facilitates Tumorigenesis and Escape from Cellular Senescence. Molecular and Cellular Biology, 2002, 22, 644-656.	2.3	168
14	Activation of the Jak3 pathway is associated with granulocytic differentiation of myeloid precursor cells. Blood, 2002, 100, 2753-2762.	1.4	25
15	Janus kinases: components of multiple signaling pathways. Oncogene, 2000, 19, 5662-5679.	5.9	423
16	IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene, 2000, 19, 2532-2547.	5.9	205
17	Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in \hat{l}^2 -islet cell hyperplasia. Nature Genetics, 1999, 22, 44-52.	21.4	711