
Lionel Larue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 2005, 24, 7443-7454.	2.6	1,078
2	E-cadherin null mutant embryos fail to form a trophectoderm epithelium Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8263-8267.	3.3	823
3	Lack of \hat{l}^2 -catenin affects mouse development at gastrulation. Development (Cambridge), 1995, 121, 3529-3537.	1.2	621
4	Oncogenic Braf Induces Melanocyte Senescence and Melanoma in Mice. Cancer Cell, 2009, 15, 294-303.	7.7	521
5	Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes and Development, 2006, 20, 3426-3439.	2.7	495
6	The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Research, 2003, 63, 2172-8.	0.4	483
7	Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 2007, 26, 7445-7456.	2.6	441
8	Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature, 2005, 433, 764-769.	13.7	361
9	Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 2004, 23, 7345-7354.	2.6	315
10	A role for cadherins in tissue formation. Development (Cambridge), 1996, 122, 3185-3194.	1.2	307
11	β-Catenin induces immortalization of melanocytes by suppressing <i>p16^{INK4a}</i> expression and cooperates with N-Ras in melanoma development. Genes and Development, 2007, 21, 2923-2935.	2.7	283
12	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	15.2	266
13	IGF-II induces rapid \hat{l}^2 -catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene, 2001, 20, 4942-4950.	2.6	254
14	Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. Journal of Cell Biology, 2006, 173, 333-339.	2.3	234
15	The WNT/Beta-catenin pathway in melanoma. Frontiers in Bioscience - Landmark, 2006, 11, 733.	3.0	220
16	Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death and Differentiation, 2014, 21, 1250-1261.	5.0	195
17	A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell, 2013, 155, 1022-1033.	13.5	184
18	Brn-2 Represses Microphthalmia-Associated Transcription Factor Expression and Marks a Distinct Subpopulation of Microphthalmia-Associated Transcription Factor–Negative Melanoma Cells. Cancer Research, 2008, 68, 7788-7794.	0.4	173

#	Article	IF	CITATIONS
19	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	5.8	152
20	A Portrait of AKT Kinases: Human Cancer and Animal Models Depict a Family with Strong Individualities. Cancer Biology and Therapy, 2004, 3, 268-275.	1.5	123
21	Cre-mediated recombination in the skin melanocyte lineage. Genesis, 2003, 36, 73-80.	0.8	122
22	The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15071-15076.	3.3	120
23	Cadherins in neural crest cell development and transformation. Journal of Cellular Physiology, 2001, 189, 121-132.	2.0	117
24	Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Developmental Dynamics, 2007, 236, 282-289.	0.8	115
25	Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Developmental Biology, 2009, 325, 225-237.	0.9	114
26	Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes. Cell, 2010, 141, 994-1005.	13.5	113
27	Brn-2 Expression Controls Melanoma Proliferation and Is Directly Regulated by β-Catenin. Molecular and Cellular Biology, 2004, 24, 2915-2922.	1.1	111
28	Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 316-325.	1.5	109
29	Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo. Journal of Investigative Dermatology, 2015, 135, 1810-1819.	0.3	106
30	Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene, 2013, 32, 2230-2238.	2.6	101
31	Rac1 Drives Melanoblast Organization during Mouse Development by Orchestrating Pseudopod- Driven Motility and Cell-Cycle Progression. Developmental Cell, 2011, 21, 722-734.	3.1	98
32	Suppression of Autophagy Dysregulates the Antioxidant Response and Causes Premature Senescence of Melanocytes. Journal of Investigative Dermatology, 2015, 135, 1348-1357.	0.3	88
33	Expression of Catenins during Mouse Embryonic Development and in Adult Tissues. Cell Adhesion and Communication, 1995, 3, 337-352.	1.7	85
34	Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell and Melanoma Research, 2011, 24, 631-642.	1.5	81
35	Wnt/βâ€catenin signaling is stimulated by αâ€melanocyteâ€stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell and Melanoma Research, 2011, 24, 309-325.	1.5	80
36	The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell and Melanoma Research, 2008, 21, 471-476.	1.5	78

#	Article	IF	CITATIONS
37	Spatiotemporal gene control by the Cre-ERT2 system in melanocytes. Genesis, 2006, 44, 34-43.	0.8	76
38	New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis. Cell Reports, 2015, 13, 840-853.	2.9	76
39	Involvement of endothelin receptors in normal and pathological development of neural crest cells. International Journal of Developmental Biology, 2003, 47, 315-25.	0.3	76
40	Angiotropism, Pericytic Mimicry and Extravascular Migratory Metastasis in Melanoma: An Alternative to Intravascular Cancer Dissemination. Cancer Microenvironment, 2014, 7, 139-152.	3.1	73
41	Biological and mathematical modeling of melanocyte development. Development (Cambridge), 2011, 138, 3943-3954.	1.2	72
42	Cutaneous melanoma in genetically modified animals. Pigment Cell & Melanoma Research, 2007, 20, 485-497.	4.0	69
43	Melanoblasts' Proper Location and Timed Differentiation Depend on Notch/RBP-J Signaling in Postnatal Hair Follicles. Journal of Investigative Dermatology, 2008, 128, 2686-2695.	0.3	69
44	Mitf is a master regulator of the v-ATPase forming an Mitf/v-ATPase/TORC1 control module for cellular homeostasis. Journal of Cell Science, 2015, 128, 2938-50.	1.2	68
45	IGF-II Promotes Mesoderm Formation. Developmental Biology, 2000, 227, 133-145.	0.9	66
46	Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell & Melanoma Research, 2005, 18, 181-187.	4.0	66
47	MITF has a central role in regulating starvation-induced autophagy in melanoma. Scientific Reports, 2019, 9, 1055.	1.6	66
48	Translational reprogramming marks adaptation to asparagine restriction in cancer. Nature Cell Biology, 2019, 21, 1590-1603.	4.6	61
49	Mosaicism of tyrosinase-locus transcription and chromatin structure in dark vs. light melanocyte clones of homozygouschinchilla-mottled mice. Genesis, 1991, 12, 393-402.	3.3	59
50	A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nature Communications, 2015, 6, 8093.	5.8	58
51	Deletion of Pten in the mouse enteric nervous system induces ganglioneuromatosis and mimics intestinal pseudoobstruction. Journal of Clinical Investigation, 2009, 119, 3586-3596.	3.9	52
52	Automated Cell Tracking and Analysis in Phase-Contrast Videos (iTrack4U): Development of Java Software Based on Combined Mean-Shift Processes. PLoS ONE, 2013, 8, e81266.	1.1	52
53	<i>Pax3</i> acts cell autonomously in the neural tube and somites by controlling cell surface properties. Development (Cambridge), 2001, 128, 1995-2005.	1.2	51
54	β-Catenin in the Melanocyte Lineage. Pigment Cell & Melanoma Research, 2003, 16, 312-317.	4.0	49

#	Article	IF	CITATIONS
55	Transcriptomic Analysis of Mouse Embryonic Skin Cells Reveals Previously Unreported Genes Expressed in Melanoblasts. Journal of Investigative Dermatology, 2012, 132, 170-178.	0.3	49
56	Genomeâ€wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene. Pigment Cell and Melanoma Research, 2010, 23, 404-418.	1.5	48
57	Involvement of cadherins 7 and 20 in mouse embryogenesis and melanocyte transformation. Oncogene, 2004, 23, 6726-6735.	2.6	46
58	Autophagy deficient melanocytes display a senescence associated secretory phenotype that includes oxidized lipid mediators. International Journal of Biochemistry and Cell Biology, 2016, 81, 375-382.	1.2	46
59	Expression of the Cytoplasmic Domain of E-cadherin Induces Precocious Mammary Epithelial Alveolar Formation and Affects Cell Polarity and Cell–Matrix Integrity. Developmental Biology, 1999, 216, 491-506.	0.9	45
60	YY1 Regulates Melanocyte Development and Function by Cooperating with MITF. PLoS Genetics, 2012, 8, e1002688.	1.5	45
61	MITF reprograms the extracellular matrix and focal adhesion in melanoma. ELife, 2021, 10, .	2.8	45
62	STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene, 2021, 40, 1091-1105.	2.6	42
63	Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Current Biology, 2017, 27, 624-637.	1.8	38
64	RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nature Communications, 2017, 8, 15262.	5.8	38
65	The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Letters, 2017, 405, 111-119.	3.2	35
66	The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment Cell and Melanoma Research, 2018, 31, 95-109.	1.5	35
67	BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes and Development, 2019, 33, 310-332.	2.7	35
68	Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells. PLoS Genetics, 2015, 11, e1005555.	1.5	35
69	Plasticity of Cadherin-Catenin Expression in the Melanocyte Lineage. Pigment Cell & Melanoma Research, 2000, 13, 260-272.	4.0	33
70	Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma. Cell Death and Differentiation, 2020, 27, 29-43.	5.0	33
71	Tspan8-β-catenin positive feedback loop promotes melanoma invasion. Oncogene, 2019, 38, 3781-3793.	2.6	31
72	PTEN and melanomagenesis. Future Oncology, 2012, 8, 1109-1120.	1.1	29

#	Article	IF	CITATIONS
73	The <scp>WNT</scp> â€less wonder: <scp>WNT</scp> â€independent <i>î²</i> â€catenin signaling. Pigment Cell and Melanoma Research, 2016, 29, 524-540.	1.5	28
74	Thymine DNA glycosylase as a novel target for melanoma. Oncogene, 2019, 38, 3710-3728.	2.6	28
75	Molecular and cellular basis of depigmentation in vitiligo patients. Experimental Dermatology, 2019, 28, 662-666.	1.4	27
76	A novel model to study the dorsolateral migration of melanoblasts. Mechanisms of Development, 1999, 89, 3-14.	1.7	26
77	Inducible expression of ^{V600E} Braf using tyrosinase-driven Cre recombinase results in embryonic lethality. Pigment Cell and Melanoma Research, 2010, 23, 112-120.	1.5	26
78	Meningeal Melanocytes in the Mouse: Distribution and Dependence on Mitf. Frontiers in Neuroanatomy, 2015, 9, 149.	0.9	26
79	Bypassing melanocyte senescence by β-catenin: A novel way to promote melanoma. Pathologie Et Biologie, 2009, 57, 543-547.	2.2	25
80	B-Raf and C-Raf Are Required for Melanocyte Stem Cell Self-Maintenance. Cell Reports, 2012, 2, 774-780.	2.9	24
81	A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus. PLoS ONE, 2013, 8, e53183.	1.1	24
82	β-Catenin Inhibitor ICAT Modulates the Invasive Motility of Melanoma Cells. Cancer Research, 2014, 74, 1983-1995.	0.4	24
83	Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. Journal of Investigative Dermatology, 2016, 136, 1229-1237.	0.3	24
84	C57BL/6 congenic mouse NRAS ^{Q61K} melanoma cell lines are highly sensitive to the combination of Mek and Akt inhibitors in vitro and in vivo. Pigment Cell and Melanoma Research, 2019, 32, 829-841.	1.5	24
85	Melanoma Risk and Melanocyte Biology. Acta Dermato-Venereologica, 2020, 100, adv00139.	0.6	24
86	Phosphorylation of BRN2 Modulates Its Interaction with the Pax3 Promoter To Control Melanocyte Migration and Proliferation. Molecular and Cellular Biology, 2012, 32, 1237-1247.	1.1	23
87	Genetic predisposition of transgenic mouse melanocytes to melanoma results in malignant melanoma after exposure to a low ultraviolet B intensity nontumorigenic for normal melanocytes Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9534-9538.	3.3	22
88	miR-330-5p Targets Tyrosinase and Induces Depigmentation. Journal of Investigative Dermatology, 2014, 134, 2846-2849.	0.3	21
89	Any route for melanoblasts to colonize the skin!. Experimental Dermatology, 2016, 25, 669-673.	1.4	20
90	TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression. Cancer Research, 2019, 79, 482-494.	0.4	20

6

#	Article	IF	CITATIONS
91	The tyrosinase promoter is active in a subset of vagal neural crest cells during early development in mice. Pigment Cell and Melanoma Research, 2009, 22, 331-334.	1.5	19
92	Retinoid-X-Receptors (α/β) in Melanocytes Modulate Innate Immune Responses and Differentially Regulate Cell Survival following UV Irradiation. PLoS Genetics, 2014, 10, e1004321.	1.5	19
93	Human relevance of NRAS/BRAF mouse melanoma models. European Journal of Cell Biology, 2014, 93, 82-86.	1.6	19
94	Dct::lacZ ES Cells: A Novel Cellular Model to Study Melanocyte Determination and Differentiation. Pigment Cell & Melanoma Research, 2004, 17, 142-149.	4.0	18
95	Modeling melanoblast development. Cellular and Molecular Life Sciences, 2013, 70, 1067-1079.	2.4	18
96	Netrin-1 and Its Receptor DCC Are Causally Implicated in Melanoma Progression. Cancer Research, 2020, 80, 747-756.	0.4	18
97	Pigmented cell lines of mouse albino melanocytes containing a tyrosinase cDNA with an inducible promoter. Somatic Cell and Molecular Genetics, 1990, 16, 361-368.	0.7	15
98	Constitutive gray hair in mice induced by melanocyteâ€specific deletion of câ€Myc. Pigment Cell and Melanoma Research, 2012, 25, 312-325.	1.5	13
99	Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE, 2016, 11, e0161640.	1.1	13
100	<scp>UVB</scp> represses melanocyte cell migration and acts through βâ€catenin. Experimental Dermatology, 2017, 26, 875-882.	1.4	13
101	Epidermal melanocytes in segmental vitiligo show altered expression of Eâ€cadherin, but not Pâ€cadherin. British Journal of Dermatology, 2018, 178, 1204-1206.	1.4	13
102	Filamentous Aggregation of Sequestosome-1/p62 in Brain Neurons and Neuroepithelial Cells upon Tyr-Cre-Mediated Deletion of the Autophagy Gene Atg7. Molecular Neurobiology, 2018, 55, 8425-8437.	1.9	13
103	MITF and TFEB cross-regulation in melanoma cells. PLoS ONE, 2020, 15, e0238546.	1.1	13
104	Cell surface molecules and truncal neural crest ontogeny: A perspective. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 140-150.	3.6	12
105	Flanking genomic region of Tyr::Cre mice, rapid genotyping for homozygous mice. Pigment Cell & Melanoma Research, 2007, 20, 305-306.	4.0	12
106	LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. Science Advances, 2019, 5, eaau5106.	4.7	12
107	General strategy to analyse melanoma in mice. Pigment Cell and Melanoma Research, 2011, 24, 987-988.	1.5	11
108	A pair of transmembrane receptors essential for the retention and pigmentation of hair. Genesis, 2012, 50, 783-800.	0.8	11

#	Article	IF	CITATIONS
109	NRAS, NRAS, Which Mutation Is Fairest of Them All?. Journal of Investigative Dermatology, 2016, 136, 1936-1938.	0.3	11
110	BRN2 is a non-canonical melanoma tumor-suppressor. Nature Communications, 2021, 12, 3707.	5.8	10
111	Chk1 is essential for the development of murine epidermal melanocytes. Pigment Cell and Melanoma Research, 2013, 26, 580-585.	1.5	8
112	Simulation of melanoblast displacements reveals new features of developmental migration. Development (Cambridge), 2018, 145, .	1.2	8
113	Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers, 2022, 14, 706.	1.7	8
114	General strategy to analyse coat colour phenotypes in mice. Pigment Cell and Melanoma Research, 2012, 25, 117-119.	1.5	7
115	Efficient gene expression profiling of laserâ€microdissected melanoma metastases. Pigment Cell and Melanoma Research, 2012, 25, 783-791.	1.5	7
116	TBX2 controls a proproliferative gene expression program in melanoma. Genes and Development, 2021, 35, 1657-1677.	2.7	7
117	On the Use of Regulatory Regions from Pigmentary Genes to Drive the Expression of Transgenes in Mice. Pigment Cell & Melanoma Research, 2004, 17, 188-190.	4.0	6
118	Genomic localization of the Z/EG transgene in the mouse genome. Genesis, 2010, 48, 96-100.	0.8	6
119	Origin of Mouse Melanomas. Journal of Investigative Dermatology, 2012, 132, 2135-2136.	0.3	6
120	Stabilization of \hat{l}^2 -catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Development (Cambridge), 2022, 149, .	1.2	6
121	Secrets to developing <i>Wnt</i> â€age melanoma revealed. Pigment Cell and Melanoma Research, 2009, 22, 520-521.	1.5	5
122	Quantitative Analysis of Melanocyte Migration <i>in vitro</i> Based on Automated Cell Tracking under Phase Contrast Microscopy Considering the Combined Influence of Cell Division and Cell-Matrix Interactions. Mathematical Modelling of Natural Phenomena, 2010, 5, 4-33.	0.9	5
123	Melanoblast proliferation dynamics during mouse embryonic development. Modeling and validation. Journal of Theoretical Biology, 2011, 276, 86-98.	0.8	5
124	Nonâ€thermal plasmas: novel preventive and curative therapy against melanomas?. Experimental Dermatology, 2014, 23, 716-717.	1.4	5
125	Efficacy of Targeted Radionuclide Therapy Using [1311]ICF01012 in 3D Pigmented BRAF- and NRAS-Mutant Melanoma Models and In Vivo NRAS-Mutant Melanoma. Cancers, 2021, 13, 1421.	1.7	5
126	Inherited duplications of PPP2R3B predispose to nevi and melanoma via a C21orf91-driven proliferative phenotype. Genetics in Medicine, 2021, 23, 1636-1647.	1.1	5

#	Article	IF	CITATIONS
127	Quiescent melanocytes form primary cilia. Experimental Dermatology, 2014, 23, 426-427.	1.4	4
128	The immune system prevents recurrence of transplanted but not autochthonous antigenic tumors after oncogene inactivation therapy. International Journal of Cancer, 2017, 141, 2551-2561.	2.3	4
129	A histopathological classification system of Tyr:: <scp>NRAS^{Q61K}</scp> murine melanocytic lesions: A reproducible simplified classification. Pigment Cell and Melanoma Research, 2018, 31, 423-431.	1.5	4
130	Fonction du complexe cadhérine/caténine dans les cellules épithéliales de la glande mammaire et dans le lignage mélanocytaire. Société De Biologie Journal, 2004, 198, 385-389.	0.3	3
131	A French Academic Network for Sharing Transgenic Materials and Knowledge. Transgenic Research, 2005, 14, 801-802.	1.3	3
132	Animal Models of Melanoma. , 2018, , 1-31.		3
133	A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Communications Biology, 2021, 4, 423.	2.0	3
134	Adipocyte Extracellular Vesicles Decrease p16INK4A in Melanoma: An Additional Link between Obesity and Cancer. Journal of Investigative Dermatology, 2022, 142, 2488-2498.e8.	0.3	3
135	Modeling and analysis of melanoblast motion. Journal of Mathematical Biology, 2019, 79, 2111-2132.	0.8	2
136	Targeted Knockout of β-Catenin in Adult Melanocyte Stem Cells Using a Mouse Line, Dct::CreERT2, Results in Disrupted Stem Cell Renewal and Pigmentation Defects. Journal of Investigative Dermatology, 2021, 141, 1363-1366.e9.	0.3	2
137	Melanocyte Homeostasis in Vitiligo. , 2019, , 265-275.		1
138	Sequencing two Tyr::CreER T2 transgenic mouse lines. Pigment Cell and Melanoma Research, 2020, 33, 426-434.	1.5	1
139	CLEC12B Decreases Melanoma Proliferation by Repressing Signal Transducer and Activator of Transcription 3. Journal of Investigative Dermatology, 2021, , .	0.3	1
140	Des souris et des hommesÂ: apport des modèles animaux à l'étude du mélanome. Annales De Dermatologie Et De Venereologie, 2010, 137, A17-A18.	0.5	0
141	Richard Marais. Pigment Cell and Melanoma Research, 2010, 23, 448-448.	1.5	0
142	Front seat and back seat drivers of melanoma metastasis. Pigment Cell and Melanoma Research, 2011, 24, 898-901.	1.5	0
143	What's up <scp>NF</scp> 1?. Pigment Cell and Melanoma Research, 2016, 29, 4-5.	1.5	0

144 Animal Models of Melanoma. , 2019, , 303-333.

#	Article	IF	CITATIONS
145	In memoriam Beatrice Mintz (1921–2022). Pigment Cell and Melanoma Research, 2022, 35, 190-191.	1.5	Ο
146	MITF and TFEB cross-regulation in melanoma cells. , 2020, 15, e0238546.		0
147	MITF and TFEB cross-regulation in melanoma cells. , 2020, 15, e0238546.		0
148	MITF and TFEB cross-regulation in melanoma cells. , 2020, 15, e0238546.		0
149	MITF and TFEB cross-regulation in melanoma cells. , 2020, 15, e0238546.		0