Maqsood Ahmed Siddiqui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358184/publications.pdf

Version: 2024-02-01

110 papers 4,801 citations

35 h-index 102487 66 g-index

111 all docs

111 docs citations

times ranked

111

7074 citing authors

#	Article	IF	Citations
1	Strontium-Doped Nickel Oxide Nanoparticles: Synthesis, Characterization, and Cytotoxicity Study in Human Lung Cancer A549 Cells. Biological Trace Element Research, 2022, 200, 1598-1607.	3.5	6
2	Organophosphorus Flame Retardant TDCPP Displays Genotoxic and Carcinogenic Risks in Human Liver Cells. Cells, 2022, 11, 195.	4.1	11
3	Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biological Trace Element Research, 2022, 200, 5042-5051.	3.5	12
4	Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. International Journal of Molecular Sciences, 2022, 23, 3998.	4.1	3
5	Green synthesis of silver nanoparticles using Phoenix dactylifera seed extract and its anticancer effect against human lung adenocarcinoma cells. Journal of Drug Delivery Science and Technology, 2022, 70, 103260.	3.0	15
6	Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans. Chemosphere, 2022, 296, 133977.	8.2	16
7	HPTLC estimation and anticancer potential of Aloe perryi petroleum ether extract (APPeE): A mechanistic study on human breast cancer cells (MDA-MB-231). Journal of King Saud University - Science, 2022, 34, 101968.	3.5	4
8	Clinical response of carboplatin-based chemotherapy and its association to genetic polymorphism in lung cancer patients from North India $\hat{a} \in A$ clinical pharmacogenomics study. Journal of Cancer Research and Therapeutics, 2022, 18, 109-118.	0.9	2
9	Neodymium oxide nanostructures and their cytotoxic evaluation in human cancer cells. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127029.	3.0	3
10	Neuroprotective Effects of Withania somnifera on 4-Hydroxynonenal Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells Through ROS Inhibition and Apoptotic Mitochondrial Pathway. Neurochemical Research, 2021, 46, 171-182.	3.3	2
11	Protective effects of <scp> <i> Nigella sativa < /i > </i></scp> extract against H < sub > 2 < / sub > 0 < sub > 2 < / sub > 3 € induced cell death through the inhibition of DNA damage and cell cycle arrest in human umbilical vein endothelial cells (HUVECs). Journal of Applied Toxicology, 2021, 41, 820-831.	2.8	5
12	Oxidative Stress Mediated Cytotoxicity, Cell Cycle Arrest, and Apoptosis Induced by Rosa damascena in Human Cervical Cancer HeLa Cells. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	4.0	13
13	Carbofuran cytotoxicity, DNA damage, oxidative stress, and cell death in human umbilical vein endothelial cells: Evidence of vascular toxicity. Journal of Applied Toxicology, 2021, 41, 847-860.	2.8	10
14	Organophosphorus flameâ€retardant tris(1â€chloroâ€2â€propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells. Journal of Applied Toxicology, 2021, 41, 861-873.	2.8	7
15	Cytotoxic and molecular assessment against breast (MCF-7) cancer cells with cobalt oxide nanoballs. Journal of King Saud University - Science, 2021, 33, 101467.	3.5	2
16	Cytotoxic assessment of liver cancer cells (HepG2) with raw, functionalized multiwalled carbon nanotubes and their comparison with nanohydroxyapatite. Journal of King Saud University - Science, 2021, 33, 101444.	3.5	6
17	Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. Journal of Applied Toxicology, 2021, 41, 832-846.	2.8	20
18	High-throughput transcriptomics: An insight on the pathways affected in HepG2 cells exposed to nickel oxide nanoparticles. Chemosphere, 2020, 244, 125488.	8.2	17

#	Article	IF	Citations
19	Synthesis, optical properties and toxic potentiality of photoluminescent lanthanum oxide nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125511.	4.7	12
20	Tris(2-chloroethyl) Phosphate (TCEP) Elicits Hepatotoxicity by Activating Human Cancer Pathway Genes in HepG2 Cells. Toxics, 2020, 8, 109.	3.7	14
21	Biochemical and Molecular Investigation of In Vitro Antioxidant and Anticancer Activity Spectrum of Crude Extracts of Willow Leaves Salix safsaf. Plants, 2020, 9, 1295.	3.5	14
22	Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human Breast Cancer (MCF-7) Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4106-4116.	3.7	11
23	Petroselinum sativum protects HepG2 cells from cytotoxicity and oxidative stress induced by hydrogen peroxide. Molecular Biology Reports, 2020, 47, 2771-2780.	2.3	10
24	Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. Journal of Biological Inorganic Chemistry, 2020, 25, 325-338.	2.6	24
25	Optically active neodymium hydroxide surface-functionalized mesoporous silica micro-cocoons for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110877.	5.0	12
26	Anticancer efficacies of persicogenin and homoeriodictyol isolated from Rhus retinorrhoea. Process Biochemistry, 2020, 95, 186-196.	3.7	11
27	Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: An in vitro approach. Process Biochemistry, 2020, 91, 387-397.	3.7	56
28	Selenium Nanoparticles Induce Cytotoxicity and Apoptosis in Human Breast Cancer (MCF-7) and Liver (HepG2) Cell Lines. Nanoscience and Nanotechnology Letters, 2020, 12, 324-330.	0.4	13
29	Anti-cancer efficacy of Aloe vera capped hematite nanoparticles in human breast cancer (MCF-7) cells. Journal of Drug Delivery Science and Technology, 2020, 60, 102052.	3.0	8
30	Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways. Chemosphere, 2019, 237, 124519.	8.2	27
31	Toxicity response of highly colloidal, bioactive, monodisperse SiO2@ Pr(OH)3 hollow microspheres. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110390.	5.0	8
32	Luminescent surface-functionalized mesoporous core-shell nanospheres and their cytotoxicity evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 146-156.	4.7	4
33	Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Scientific Reports, 2019, 9, 5237.	3 . 3	171
34	Corn Silk (<i>Zea mays L.</i>) Induced Apoptosis in Human Breast Cancer (MCF-7) Cells via the ROS-Mediated Mitochondrial Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	28
35	Cytotoxicity and mitochondrial-mediated apoptosis induced by Fenugreek seed oil in human hepatocellular carcinoma cells via reactive oxygen species generation. Pharmacognosy Magazine, 2019, 15, 12.	0.6	2
36	Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells. Advances in Experimental Medicine and Biology, 2018, 1048, 163-174.	1.6	22

#	Article	IF	Citations
37	6-OHBDE-47 induces transcriptomic alterations of CYP1A1, XRCC2, HSPA1A, EGR1 genes and trigger apoptosis in HepG2 cells. Toxicology, 2018, 400-401, 40-47.	4.2	17
38	Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO ₂ nanoparticles in A549 cells. Human and Experimental Toxicology, 2018, 37, 496-507.	2.2	21
39	Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of <i>Nepeta deflersiana</i> against Human Cervical Cancer Cells (HeLA). Bioinorganic Chemistry and Applications, 2018, 2018, 1-12.	4.1	178
40	Hepatoprotective Effect of Steroidal Glycosides From Dioscorea villosa on Hydrogen Peroxide-Induced Hepatotoxicity in HepG2 Cells. Frontiers in Pharmacology, 2018, 9, 797.	3.5	19
41	Green Synthesis of Zinc Oxide Nanoparticles Using <i>Alstonia Macrophylla</i> In-VitroAnticancer Activity. Science of Advanced Materials, 2018, 10, 349-355.	0.7	22
42	Evaluation of cytotoxic responses of raw and functionalized multi-walled carbon nanotubes in human breast cancer (MCF-7) cells. Vacuum, 2017, 146, 578-585.	3.5	11
43	Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells. South African Journal of Botany, 2017, 112, 70-78.	2.5	19
44	Synthesis and characterization of some abundant nanoparticles, their antimicrobial and enzyme inhibition activity. Acta Microbiologica Et Immunologica Hungarica, 2017, 64, 203-216.	0.8	13
45	A facile one-pot synthesis of novel 2,5-disubstituted-1,3,4-oxadiazoles under conventional and microwave conditions and evaluation of their in vitro antimicrobial activities. Arabian Journal of Chemistry, 2017, 10, S2853-S2861.	4.9	23
46	Zinc Oxide Nanoparticles: Mechanism(s) of Cell Death Induced in Human Epidermoid Larynx Cell Line (HEp-2). Nanoscience and Nanotechnology Letters, 2017, 9, 573-582.	0.4	6
47	In Vitro Cytotoxicity of Mesoporous SiO ₂ @Eu(OH) ₃ Core-Shell Nanospheres in MCF-7. Journal of Nanomaterials, 2016, 2016, 1-6.	2.7	15
48	<i>Portulaca oleracea</i> Linn seed extract ameliorates hydrogen peroxide-induced cell death in human liver cells by inhibiting reactive oxygen species generation and oxidative stress. Tropical Journal of Pharmaceutical Research, 2016, 15, 1643.	0.3	5
49	Genotoxicity of ferric oxide nanoparticles in Raphanus sativus : Deciphering the role of signaling factors, oxidative stress and cell death. Journal of Environmental Sciences, 2016, 47, 49-62.	6.1	28
50	In-Vitro dual inhibition of protein glycation, and oxidation by some Arabian plants. BMC Complementary and Alternative Medicine, 2016, 16, 276.	3.7	15
51	Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line. BMC Complementary and Alternative Medicine, 2016, 16, 126.	3.7	9
52	Differential cytotoxicity of copper ferrite nanoparticles in different human cells. Journal of Applied Toxicology, 2016, 36, 1284-1293.	2.8	47
53	Hazards of low dose flame-retardants (BDE-47 and BDE-32): Influence on transcriptome regulation and cell death in human liver cells. Journal of Hazardous Materials, 2016, 308, 37-49.	12.4	32
54	Zinc oxide quantum dots: multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Advances, 2016, 6, 26111-26120.	3.6	43

#	Article	IF	Citations
55	Preliminary study of spectral features of normal and malignant cell cultures. Laser Physics, 2016, 26, 045601.	1.2	3
56	Protective effect of i>Lepidium sativum i>seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharmaceutical Biology, 2016, 54, 314-321.	2.9	40
57	Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells. Journal of Applied Toxicology, 2015, 35, 640-650.	2.8	8
58	Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids and Surfaces B: Biointerfaces, 2015, 132, 290-298.	5.0	33
59	Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 101-108.	2.7	20
60	Hepatoprotective potential of <i>Lavandula coronopifolia</i> extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells. Toxicology and Industrial Health, 2015, 31, 727-737.	1.4	27
61	Novel All Trans-Retinoic Acid Derivatives: Cytotoxicity, Inhibition of Cell Cycle Progression and Induction of Apoptosis in Human Cancer Cell Lines. Molecules, 2015, 20, 8181-8197.	3.8	19
62	Mechanistic insights into a novel chromone-appended Cu(<scp>ii</scp>) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Transactions, 2015, 44, 10330-10342.	3.3	87
63	Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids and Surfaces B: Biointerfaces, 2015, 125, 73-81.	5.0	55
64	Concentrationâ€dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. Environmental Toxicology, 2015, 30, 137-148.	4.0	71
65	Zinc oxide quantum dots: a potential candidate to detain liver cancer cells. Bioprocess and Biosystems Engineering, 2015, 38, 155-163.	3.4	19
66	4-Hydroxy-trans-2-nonenal (4-HNE) induces neuronal SH-SY5Y cell death via hampering ATP binding at kinase domain of Akt1. Archives of Toxicology, 2015, 89, 243-258.	4.2	18
67	Anticancer activity of chloroform extract and sub-fractions of nepeta deflersiana on human breast and lung cancer cells: an in vitro cytotoxicity assessment. Pharmacognosy Magazine, 2015, 11, 598.	0.6	20
68	Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3383-3387.	1.2	30
69	CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria. Korean Chemical Engineering Research, 2015, 53, 565-569.	0.2	8
70	ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 267-276.	5.0	254
71	Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 209-215.	5.0	60
72	Cytotoxicity Assessments of Portulaca oleracea and Petroselinum sativum Seed Extracts on Human Hepatocellular Carcinoma Cells (HepG2). Asian Pacific Journal of Cancer Prevention, 2014, 15, 6633-6638.	1.2	39

#	Article	IF	CITATIONS
7 3	Cytotoxicity of Nigella Sativa Seed Oil and Extract Against Human Lung Cancer Cell Line. Asian Pacific Journal of Cancer Prevention, 2014, 15, 983-987.	1.2	55
74	Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Molecular and Cellular Biochemistry, 2013, 384, 59-69.	3.1	65
7 5	Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicology and Applied Pharmacology, 2013, 273, 289-297.	2.8	47
76	Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7). European Biophysics Journal, 2013, 42, 811-818.	2.2	24
77	<i>trans</i> -Resveratrol Protects Ischemic PC12 Cells by Inhibiting the Hypoxia Associated Transcription Factors and Increasing the Levels of Antioxidant Defense Enzymes. ACS Chemical Neuroscience, 2013, 4, 285-294.	3.5	54
78	Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. OncoTargets and Therapy, 2013, 6, 75.	2.0	46
79	Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. International Journal of Nanomedicine, 2013, 8, 189.	6.7	66
80	Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE, 2013, 8, e69534.	2.5	285
81	Anticancer Activity of Petroselinum sativum Seed Extracts on MCF-7 Human Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2013, 14, 5719-5723.	1.2	39
82	In Vitro Cytotoxic Activity of Seed Oil of Fenugreek Against Various Cancer Cell Lines. Asian Pacific Journal of Cancer Prevention, 2013, 14, 1829-1832.	1.2	46
83	Expression and Inducibility of Cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in Human Cord Blood CD34+ Stem Cell–Derived Differentiating Neuronal Cells. Toxicological Sciences, 2012, 129, 392-410.	3.1	29
84	Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L Aquatic Toxicology, 2012, 124-125, 83-90.	4.0	107
85	Toxicogenomic Mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in <i>E. coli</i> Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental Science & Colic (I) Environmental Science & Colic (I) Science & Colic (I) Environmental & Colic (I) Environmental & Colic (I) Science & Colic (I) Environmental & Colic (I) Environmental & Colic (I) Science & Colic (I) Environmental & Colic (I) Environmental & Colic (I) Science & Colic (I) Environmental & Colic (I) Environmental & Colic (I) Science & Colic (I) Environmental & Colic (I) Environmental & Colic (I) Science & Colic (I) Environmental & Colic (I) Enviro	10.0	39
86	Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicology in Vitro, 2012, 26, 351-361.	2.4	220
87	Cytotoxic and necrotic responses in human amniotic epithelial (WISH) cells exposed to organophosphate insecticide phorate. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 744, 125-134.	1.7	35
88	Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food and Chemical Toxicology, 2012, 50, 641-647.	3.6	140
89	Short-term exposure of 4-hydroxynonenal induces mitochondria-mediated apoptosis in PC12 cells. Human and Experimental Toxicology, 2012, 31, 336-345.	2.2	18
90	Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats. Toxicology and Applied Pharmacology, 2012, 259, 54-65.	2.8	59

#	Article	IF	CITATIONS
91	Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicology and Applied Pharmacology, 2012, 259, 160-168.	2.8	183
92	Differential protection of pre-, co- and post-treatment of curcumin against hydrogen peroxide in PC12 cells. Human and Experimental Toxicology, 2011, 30, 192-198.	2.2	26
93	Preferential binding of insecticide phorate with sub-domain IIA of human serum albumin induces protein damage and its toxicological significance. Food and Chemical Toxicology, 2011, 49, 1787-1795.	3.6	30
94	Protective effects of l-pGlu-(2-propyl)-l-His-l-ProNH2, a newer thyrotropin releasing hormone analog in in vitro and in vivo models of cerebral ischemia. Peptides, 2011, 32, 1225-1231.	2.4	19
95	Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis, 2011, 215, 301-308.	0.8	98
96	Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles. Chemical Engineering Journal, 2011, 175, 450-457.	12.7	77
97	Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 2011, 283, 101-108.	4.2	279
98	Effect of Trans-resveratrol on rotenone-induced cytotoxicity in human breast adenocarcinoma cells. Toxicology International, 2011, 18, 105.	0.1	12
99	Protective potential of $17\hat{l}^2$ -estradiol against co-exposure of 4-hydroxynonenal and 6-hydroxydopamine in PC12 cells. Human and Experimental Toxicology, 2011, 30, 860-869.	2.2	6
100	Galactose-grafted chylomicron-mimicking emulsion: evaluation of specificity against HepG-2 and MCF-7 cell lines. Journal of Pharmacy and Pharmacology, 2010, 61, 303-310.	2.4	19
101	Exposure to acrolein by inhalation causes platelet activation. Toxicology and Applied Pharmacology, 2010, 248, 100-110.	2.8	74
102	Association of dopamine DA-D ₂ receptor in rotenone-induced cytotoxicity in PC12 cells. Toxicology and Industrial Health, 2010, 26, 533-542.	1.4	6
103	Caspase Cascade Regulated Mitochondria Mediated Apoptosis in Monocrotophos Exposed PC12 Cells. Chemical Research in Toxicology, 2010, 23, 1663-1672.	3.3	67
104	Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 2010, 396, 578-583.	2.1	321
105	NGF induced differentiated PC12 cells as in vitro tool to study 4-hydroxynonenal induced cellular damage. Toxicology in Vitro, 2010, 24, 1681-1688.	2.4	7
106	Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicology in Vitro, 2010, 24, 1592-1598.	2.4	104
107	Oxygen Glucose Deprivation Model of Cerebral Stroke in PC-12 Cells: Glucose as a Limiting Factor. Toxicology Mechanisms and Methods, 2009, 19, 154-160.	2.7	21
108	Galactose-grafted chylomicron-mimicking emulsion: evaluation of specificity against HepG-2 and MCF-7 cell lines. Journal of Pharmacy and Pharmacology, 2009, 61, 303-310.	2.4	4

#	Article	IF	CITATIONS
109	Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicology in Vitro, 2008, 22, 1681-1688.	2.4	125
110	Aloe vera-induced apoptotic cell death through ROS generation, cell cycle arrest, and DNA damage in human breast cancer cells. , 0, , .		5