
Tomoo Mizugaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335762/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hydroxyapatite-Supported Palladium Nanoclusters:Â A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 2004, 126, 10657-10666.	6.6	904
2	Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2000, 122, 7144-7145.	6.6	436
3	Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. Journal of the American Chemical Society, 2002, 124, 11572-11573.	6.6	390
4	Oxidantâ€Free Alcohol Dehydrogenation Using a Reusable Hydrotalciteâ€Supported Silver Nanoparticle Catalyst. Angewandte Chemie - International Edition, 2008, 47, 138-141.	7.2	274
5	Design of a Silver–Cerium Dioxide Core–Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions. Angewandte Chemie - International Edition, 2012, 51, 136-139.	7.2	258
6	A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols. Journal of the American Chemical Society, 2004, 126, 5662-5663.	6.6	248
7	Convenient and Efficient Pd-Catalyzed Regioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as Sole Reoxidant. Angewandte Chemie - International Edition, 2006, 45, 481-485.	7.2	241
8	Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chemical Communications, 2001, , 461-462.	2.2	212
9	Nucleophilic Substitution Reactions of Alcohols with Use of Montmorillonite Catalysts as Solid BrÃ,nsted Acids. Journal of Organic Chemistry, 2007, 72, 6006-6015.	1.7	198
10	Efficient Aerobic Oxidation of Alcohols using a Hydrotalcite‣upported Gold Nanoparticle Catalyst. Advanced Synthesis and Catalysis, 2009, 351, 1890-1896.	2.1	188
11	One-step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2015, 137, 13452-13455.	6.6	185
12	An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions. Journal of the American Chemical Society, 2005, 127, 9674-9675.	6.6	182
13	Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chemical Communications, 2008, , 4804.	2.2	180
14	Supported Silverâ€Nanoparticle atalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angewandte Chemie - International Edition, 2008, 47, 7938-7940.	7.2	177
15	Supported silver nanoparticle catalyst for selective hydration of nitriles to amides in water. Chemical Communications, 2009, , 3258.	2.2	164
16	Highly Selective Hydrogenolysis of Clycerol to 1,3â€Propanediol over a Boehmite‧upported Platinum/Tungsten Catalyst. ChemSusChem, 2013, 6, 1345-1347.	3.6	155
17	Reconstructed Hydrotalcite as a Highly Active Heterogeneous Base Catalyst for Carbonâ^'Carbon Bond Formations in the Presence of Water. Journal of Organic Chemistry, 2006, 71, 5440-5447.	1.7	147
18	Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 2006, 79, 981-1016.	2.0	141

Томоо Мізидакі

#	Article	IF	CITATIONS
19	Metal–Ligand Core–Shell Nanocomposite Catalysts for the Selective Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 1481-1485.	7.2	140
20	Development of Rutheniumâ^'Hydroxyapatite-Encapsulated Superparamagnetic γ-Fe2O3Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen. Chemistry of Materials, 2007, 19, 1249-1256.	3.2	139
21	Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water. Chemical Communications, 2009, , 5302.	2.2	139
22	Design of Core-Pd/Shell-Ag Nanocomposite Catalyst for Selective Semihydrogenation of Alkynes. ACS Catalysis, 2016, 6, 666-670.	5.5	138
23	BrÃ,nsted Acid Mediated Heterogeneous Addition Reaction of 1,3-Dicarbonyl Compounds to Alkenes and Alcohols. Angewandte Chemie - International Edition, 2006, 45, 2605-2609.	7.2	136
24	Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Dielsâ''Alder and Aldol Reactions. Journal of the American Chemical Society, 2003, 125, 11460-11461.	6.6	131
25	Direct Transformation of Furfural to 1,2-Pentanediol Using a Hydrotalcite-Supported Platinum Nanoparticle Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2243-2247.	3.2	131
26	Dendritic Nanoreactors Encapsulating Pd Particles for Substrate-Specific Hydrogenation of Olefins. Nano Letters, 2002, 2, 999-1002.	4.5	130
27	Selective hydrogenation of levulinic acid to 1,4-pentanediol in water using a hydroxyapatite-supported Pt–Mo bimetallic catalyst. Green Chemistry, 2015, 17, 5136-5139.	4.6	128
28	Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen. Green Chemistry, 2007, 9, 1246.	4.6	126
29	Selective Deoxygenation of Epoxides to Alkenes with Molecular Hydrogen Using a Hydrotalciteâ€Supported Gold Catalyst: A Concerted Effect between Gold Nanoparticles and Basic Sites on a Support. Angewandte Chemie - International Edition, 2011, 50, 2986-2989.	7.2	124
30	Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions. Green Chemistry, 2009, 11, 793.	4.6	121
31	Epoxidation of α,β-Unsaturated Ketones Using Hydrogen Peroxide in the Presence of Basic Hydrotalcite Catalysts. Journal of Organic Chemistry, 2000, 65, 6897-6903.	1.7	120
32	Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst. Tetrahedron Letters, 2002, 43, 7179-7183.	0.7	118
33	Multifunctional catalysis of a ruthenium-grafted hydrotalcite: one-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Letters, 2004, 45, 6029-6032.	0.7	118
34	Supramolecular Catalysts by Encapsulating Palladium Complexes within Dendrimers. Journal of the American Chemical Society, 2004, 126, 1604-1605.	6.6	118
35	Environmentally Friendly One-Pot Synthesis of α-Alkylated Nitriles Using Hydrotalcite-Supported Metal Species as Multifunctional Solid Catalysts. Chemistry - A European Journal, 2006, 12, 8228-8239.	1.7	118
36	Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes. Angewandte Chemie - International Edition, 2010, 49, 5545-5548.	7.2	117

#	Article	IF	CITATIONS
37	Efficient Câ^'N Bond Formations Catalyzed by a Proton-Exchanged Montmorillonite as a Heterogeneous Brønsted Acid. Organic Letters, 2006, 8, 4617-4620.	2.4	111
38	Efficient heterogeneous oxidation of organosilanes to silanols catalysed by a hydroxyapatite-bound Ru complex in the presence of water and molecular oxygen. New Journal of Chemistry, 2002, 26, 1536-1538.	1.4	110
39	Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy and Environmental Science, 2009, 2, 655.	15.6	107
40	Heterotrimetallic RuMnMn Species on a Hydrotalcite Surface as Highly Efficient Heterogeneous Catalysts for Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2005, 44, 3423-3426.	7.2	101
41	Highly efficient dehydrogenation of indolines to indoles using hydroxyapatite-bound Pd catalyst. Tetrahedron Letters, 2003, 44, 6207-6210.	0.7	99
42	Wackerâ€Type Oxidation of Internal Olefins Using a PdCl ₂ / <i>N</i> , <i>N</i> â€Dimethylacetamide Catalyst System under Copperâ€Free Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 1238-1240.	7.2	99
43	Highly Efficient Câ^'C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. Journal of Organic Chemistry, 2006, 71, 7455-7462.	1.7	98
44	Highly Efficient Gold Nanoparticle Catalyzed Deoxygenation of Amides, Sulfoxides, and Pyridine <i>N</i> â€Oxides. Chemistry - A European Journal, 2011, 17, 1768-1772.	1.7	97
45	A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chemical Communications, 2005, , 3331.	2.2	92
46	A Novel Montmorillonite-Enwrapped Scandium as a Heterogeneous Catalyst for Michael Reaction. Journal of the American Chemical Society, 2003, 125, 10486-10487.	6.6	89
47	Highly efficient esterification of carboxylic acids with alcohols by montmorillonite-enwrapped titanium as a heterogeneous acid catalyst. Tetrahedron Letters, 2003, 44, 9205-9208.	0.7	80
48	Montmorillonite-Entrapped Sub-nanoordered Pd Clusters as a Heterogeneous Catalyst for Allylic Substitution Reactions. Angewandte Chemie - International Edition, 2007, 46, 3288-3290.	7.2	77
49	Highly efficient heterogeneous acetalization of carbonyl compounds catalyzed by a titanium cation-exchanged montmorillonite. Tetrahedron Letters, 2001, 42, 8329-8332.	0.7	75
50	Highly active trimetallic Ru/CeO2/CoO(OH) catalyst for oxidation of alcohols in the presence of molecular oxygen. Journal of Molecular Catalysis A, 2004, 212, 161-170.	4.8	74
51	Mild Hydrogenation of Amides to Amines over a Platinumâ€Vanadium Bimetallic Catalyst. Angewandte Chemie - International Edition, 2017, 56, 9381-9385.	7.2	73
52	One-Pot Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Catalyzed by Pt–Mo/H-β in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 682-685.	3.2	71
53	Unique Catalysis of Nickel Phosphide Nanoparticles to Promote the Selective Transformation of Biofuranic Aldehydes into Diketones in Water. ACS Catalysis, 2020, 10, 4261-4267.	5.5	71
54	Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New Journal of Chemistry, 2003, 27, 324-328.	1.4	70

#	Article	IF	CITATIONS
55	A cobalt phosphide catalyst for the hydrogenation of nitriles. Chemical Science, 2020, 11, 6682-6689.	3.7	66
56	Novel catalysis of dendrimer-bound Pd(0) complexes: sterically steered allylic amination and the first application for a thermomorphic system. Chemical Communications, 2002, , 52-53.	2.2	65
57	Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 2005, 11, 288-297.	1.7	64
58	Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature. Catalysis Communications, 2002, 3, 511-517.	1.6	63
59	Design of high-performance heterogeneous catalysts using hydrotalcite for selective organic transformations. Green Chemistry, 2019, 21, 1361-1389.	4.6	61
60	Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chemistry, 2004, 6, 507.	4.6	60
61	PAMAM dendron-stabilised palladium nanoparticles: effect of generation and peripheral groups on particle size and hydrogenation activity. Chemical Communications, 2008, , 241-243.	2.2	60
62	Core–Shell AgNP@CeO ₂ Nanocomposite Catalyst for Highly Chemoselective Reductions of Unsaturated Aldehydes. Chemistry - A European Journal, 2013, 19, 5255-5258.	1.7	60
63	Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives. ACS Catalysis, 2021, 11, 750-757.	5.5	60
64	Supported monomeric vanadium catalyst for dehydration of amides to form nitriles. Chemical Communications, 2010, 46, 8243.	2.2	58
65	Catalysis of dendrimer-bound Pd(II) complex. Journal of Molecular Catalysis A, 1999, 145, 329-333.	4.8	56
66	Simple and clean synthesis of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene from the aromatic alkylation of phenoxyethanol with fluoren-9-one catalysed by titanium cation-exchanged montmorillonite. Green Chemistry, 2000, 2, 157-160.	4.6	56
67	One-pot synthesis of α-alkylated nitriles with carbonyl compounds through consecutive aldol reaction/hydrogenation using a hydrotalcite-supported palladium nanoparticle as a multifunctional heterogeneous catalyst. Tetrahedron Letters, 2005, 46, 5507-5510.	0.7	56
68	Selective Hydrogenolysis of Glycerol to 1,3-Propanediol Catalyzed by Pt Nanoparticles–AlO <i>x</i> /WO3. Chemistry Letters, 2012, 41, 1720-1722.	0.7	56
69	Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angewandte Chemie - International Edition, 2014, 53, 8348-8351.	7.2	54
70	Highly efficient epoxidation of α,β-unsaturated ketones by hydrogen peroxide with a base hydrotalcite catalyst prepared from metal oxides. Tetrahedron Letters, 2002, 43, 6229-6232.	0.7	53
71	A Titanium Dioxide Supported Gold Nanoparticle Catalyst for the Selective Nâ€Formylation of Functionalized Amines with Carbon Dioxide and Hydrogen. ChemCatChem, 2017, 9, 3632-3636.	1.8	53
72	Creation of monomeric La complexes on apatite surfaces and their application as heterogeneous catalysts for Michael reactions. New Journal of Chemistry, 2006, 30, 44-52.	1.4	52

#	Article	IF	CITATIONS
73	Catalyst design of hydrotalcite compounds for efficient oxidations. Catalysis Surveys From Asia, 2000, 4, 31-38.	1.2	51
74	Roomâ€Temperature Deoxygenation of Epoxides with CO Catalyzed by Hydrotalciteâ€Supported Gold Nanoparticles in Water. Chemistry - A European Journal, 2010, 16, 11818-11821.	1.7	51
75	Highly Efficient Pd/SiO2–Dimethyl Sulfoxide Catalyst System for Selective Semihydrogenation of Alkynes. Chemistry Letters, 2011, 40, 405-407.	0.7	51
76	Reusable montmorillonite-entrapped organocatalyst for asymmetric Diels–Alder reaction. Tetrahedron Letters, 2008, 49, 5464-5466.	0.7	50
77	Fine Tuning of Pd0 Nanoparticle Formation on Hydroxyapatite and Its Application for Regioselective Quinoline Hydrogenation. Chemistry Letters, 2010, 39, 832-834.	0.7	49
78	Highly Atomâ€Efficient Oxidation of Electronâ€Deficient Internal Olefins to Ketones Using a Palladium Catalyst. Angewandte Chemie - International Edition, 2013, 52, 5961-5964.	7.2	49
79	Catalytic investigations of carbon–carbon bond-forming reactions by a hydroxyapatite-bound palladium complex. New Journal of Chemistry, 2005, 29, 1174.	1.4	46
80	Chemoselective Transfer Hydrogenation of α,β-Unsaturated Aldehydes to Allylic Alcohols Using Formic Acid Catalyzed by Polymer-Bound Rh Carbonyl Clusters. Journal of Organic Chemistry, 1998, 63, 2378-2381.	1.7	45
81	Highly Chemoselective Reduction of Nitroaromatic Compounds Using a Hydrotalcite-supported Silver-nanoparticle Catalyst under a CO Atmosphere. Chemistry Letters, 2010, 39, 223-225.	0.7	42
82	Selective deoxygenation of styrene oxides under a CO atmosphere using silver nanoparticle catalyst. Tetrahedron Letters, 2010, 51, 5466-5468.	0.7	41
83	Creation of a chain-like cationic iron species in montmorillonite as a highly active heterogeneous catalyst for alkane oxygenations using hydrogen peroxide. Chemical Communications, 2002, , 690-691.	2.2	40
84	Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules, 2010, 15, 8988-9007.	1.7	40
85	Highly efficient Wacker oxidation catalyzed by heterogeneous Pd montmorillonite under acid-free conditions. Tetrahedron Letters, 2006, 47, 1425-1428.	0.7	37
86	Novel Preparation of Palladium Nanoclusters Using Metal Nitrates and Their Catalysis for Oxidative Acetoxylation of Toluene in the Presence of Molecular Oxygen. Langmuir, 2002, 18, 1849-1855.	1.6	36
87	Efficient deprotection of N-benzyloxycarbonyl group from amino acids by hydroxyapatite-bound Pd catalyst in the presence of molecular hydrogen. Tetrahedron Letters, 2003, 44, 4981-4984.	0.7	36
88	Nanoscale Palladium Cluster Immobilized on a TiO2Surface as an Efficient Catalyst for Liquid-phase Wacker Oxidation of Higher Terminal Olefins. Chemistry Letters, 2003, 32, 180-181.	0.7	36
89	Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. Jacs Au, 2021, 1, 501-507.	3.6	34
90	Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of <scp>d</scp> -glucose to <scp>d</scp> -sorbitol. Green Chemistry, 2021, 23, 2010-2016.	4.6	34

#	Article	IF	CITATIONS
91	Direct synthesis of unsymmetrical ethers from alcohols catalyzed by titanium cation-exchanged montmorillonite. Green Chemistry, 2012, 14, 610.	4.6	33
92	Simple and clean synthesis of ketones from internal olefins using PdCl2/N,N-dimethylacetamide catalyst system. Tetrahedron Letters, 2013, 54, 1596-1598.	0.7	33
93	Design of High-Performance Heterogeneous Catalysts using Apatite Compounds for Liquid-Phase Organic Syntheses. ACS Catalysis, 2017, 7, 920-935.	5.5	33
94	Highly Efficient Deprotection of Acetals by Titanium Cation-exchanged Montmorillonite as a Strong Solid Acid Catalyst. Chemistry Letters, 2003, 32, 648-649.	0.7	32
95	Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses. Catalysis Surveys From Asia, 2004, 8, 231-239.	1.0	32
96	Investigation of size-dependent properties of sub-nanometer palladium clusters encapsulated within a polyamine dendrimer. Chemical Communications, 2013, 49, 167-169.	2.2	31
97	Highly Efficient Etherification of Silanes by Using a Gold Nanoparticle Catalyst: Remarkable Effect of O ₂ . Chemistry - A European Journal, 2013, 19, 14398-14402.	1.7	30
98	Reversible Dehydrogenation-Hydrogenation of Tetrahydroquinoline-Quinoline Using a Supported Cooper Nanoparticle Catalyst. Heterocycles, 2010, 82, 1371.	0.4	27
99	Michael reaction of 1,3-dicarbonyls with enones catalyzed by a hydroxyapatite-bound La complex. Tetrahedron Letters, 2005, 46, 4283-4286.	0.7	26
100	Creation of a high-valent manganese species on hydrotalcite and its application to the catalytic aerobic oxidation of alcohols. Green Chemistry, 2010, 12, 2142.	4.6	26
101	Unique catalysis of gold nanoparticles in the chemoselective hydrogenolysis with H2: cooperative effect between small gold nanoparticles and a basic support. Chemical Communications, 2012, 48, 6723.	2.2	26
102	Heterogeneous N-oxidation of pyridines using a combined oxidant of hydrogen peroxide and nitriles catalysed by basic hydrotalcites. New Journal of Chemistry, 1999, 23, 799-801.	1.4	25
103	Oxidation of benzyl alcohol aiming at a greener reaction. Reaction Kinetics and Catalysis Letters, 2003, 78, 73-80.	0.6	24
104	Gold nanoparticle-catalyzed cyclocarbonylation of 2-aminophenols. Green Chemistry, 2013, 15, 608.	4.6	24
105	Selective Hydrogenolysis of Glycerol to 1,2-Propanediol Using Heterogeneous Copper Nanoparticle Catalyst Derived from Cu–Al Hydrotalcite. Chemistry Letters, 2013, 42, 729-731.	0.7	24
106	Palladium–Platinum Bimetallic Nanoparticle Catalysts Using Dendron Assembly for Selective Hydrogenation of Dienes and Their Application to Thermomorphic System. Chemistry Letters, 2005, 34, 272-273.	0.7	23
107	Rhodium-grafted hydrotalcite catalyst for heterogeneous 1,4-addition reaction of organoboron reagents to electron deficient olefins. Green Chemistry, 2011, 13, 2416.	4.6	23
108	A rhodium-grafted hydrotalcite as a highly efficient heterogeneous catalyst for 1,4-addition of organoboron reagents to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2006, 47, 5083-5087.	0.7	22

#	Article	IF	CITATIONS
109	Highly Efficient and Selective Transformations of Glycerol Using Reusable Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 574-578.	3.2	22
110	Development of High Performance Heterogeneous Catalysts for Selective Cleavage of Câ^'O and Câ^'C Bonds of Biomassâ€Derived Oxygenates. Chemical Record, 2019, 19, 1179-1198.	2.9	22
111	Catalysis by Polymer-Bound Rhodium Carbonyl Clusters. Selective Hydrogenation of α,β-Unsaturated Aldehydes to Allylic Alcohols in the Presence of H2and CO. Organometallics, 1996, 15, 3247-3249.	1.1	21
112	Oxidant-Free Lactonization of Diols Using a Hydrotalcite-Supported Copper Catalyst. Heterocycles, 2010, 80, 855.	0.4	21
113	O2-enhanced Catalytic Activity of Gold Nanoparticles in Selective Oxidation of Hydrosilanes to Silanols. Chemistry Letters, 2015, 44, 1062-1064.	0.7	21
114	Liquid-phase Epoxidation of Alkenes Using Molecular Oxygen Catalyzed by Vanadium Cation-exchanged Montmorillonite. Chemistry Letters, 2005, 34, 1626-1627.	0.7	20
115	Gold Nanoparticle-Catalyzed Environmentally Benign Deoxygenation of Epoxides to Alkenes. Molecules, 2011, 16, 8209-8227.	1.7	20
116	Highly efficient double-carbonylation of amines to oxamides using gold nanoparticle catalysts. Chemical Communications, 2012, 48, 11733.	2.2	20
117	Green, Multiâ€Gram Oneâ€5tep Synthesis of Core–Shell Nanocomposites in Water and Their Catalytic Application to Chemoselective Hydrogenations. Chemistry - A European Journal, 2016, 22, 17962-17966.	1.7	20
118	Mild Hydrogenation of Amides to Amines over a Platinumâ€Vanadium Bimetallic Catalyst. Angewandte Chemie, 2017, 129, 9509-9513.	1.6	20
119	Preparation of a zeolite X-encapsulated copper(ii) chloride complex and its catalysis for liquid-phase oxygenation of enamines in the presence of molecular oxygen. Chemical Communications, 2000, , 869-870.	2.2	19
120	Controlled Synthesis of Pd Clusters in Subnanometer Range Using Poly(propylene imine) Dendrimers. Chemistry Letters, 2009, 38, 1118-1119.	0.7	19
121	Creation of a monomeric vanadate species in an apatite framework as an active heterogeneous base catalyst for Michael reactions in water. Catalysis Today, 2010, 152, 93-98.	2.2	19
122	Titanium cation-exchanged montmorillonite as an active heterogeneous catalyst for the Beckmann rearrangement under mild reaction conditions. Tetrahedron Letters, 2012, 53, 5211-5214.	0.7	19
123	Highly Efficient Deoxygenation of Sulfoxides Using Hydroxyapatite-supported Ruthenium Nanoparticles. Chemistry Letters, 2014, 43, 420-422.	0.7	19
124	Highly Efficient Dehydrogenative Coupling of Hydrosilanes with Amines or Amides Using Supported Gold Nanoparticles. Chemistry - A European Journal, 2015, 21, 3202-3205.	1.7	19
125	Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol. ACS Sustainable Chemistry and Engineering, 2021, 9, 6347-6354.	3.2	19
126	Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H ₂ pressure. Organic and Biomolecular Chemistry, 2020, 18, 8827-8833.	1.5	18

#	Article	IF	CITATIONS
127	Ni ₂ P Nanoalloy as an Airâ€Stable and Versatile Hydrogenation Catalyst in Water: Pâ€Alloying Strategy for Designing Smart Catalysts. Chemistry - A European Journal, 2021, 27, 4439-4446.	1.7	18
128	Self-assembled Dendrimer-bound Pd(II) Complexes via Acid-base Interactions and their Catalysis for Allylic Amination. Chemistry Letters, 2003, 32, 692-693.	0.7	17
129	Dendritic Nanoreactor Encapsulating Rh Complex Catalyst for Hydroformylation. Chemistry Letters, 2005, 34, 286-287.	0.7	17
130	Recyclable indium catalysts for additions of 1,3-dicarbonyl compounds to unactivated alkynes affected by structure and acid strength of solid supports. Green Chemistry, 2008, 10, 1231.	4.6	17
131	Subnanoscale Size Effect of Dendrimer-encapsulated Pd Clusters on Catalytic Hydrogenation of Olefin. Chemistry Letters, 2011, 40, 180-181.	0.7	17
132	Selective synthesis of Rh5 carbonyl clusters within a polyamine dendrimer for chemoselective reduction of nitro aromatics. Chemical Communications, 2014, 50, 6526.	2.2	17
133	Clean Synthesis of 3,3′,5,5′-Tetra-tert-butyl-4,4′-diphenoquinone from the Oxidative Coupling of 2,6-Di-tert-butylphenol Catalyzed by Alkali-promoted Cu–Mg–Al Hydrotalcites in the Presence of Molecular Oxygen. Chemistry Letters, 2003, 32, 58-59.	0.7	16
134	Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 11238-11246.	3.2	16
135	Design of Ruthenium Catalysts Bound to Inorganic Crystalline Materials for Environmentally-Benign Organic Synthesis. Current Organic Chemistry, 2006, 10, 241-255.	0.9	15
136	New Routes for Refinery of Biogenic Platform Chemicals Catalyzed by Cerium Oxide-supported Ruthenium Nanoparticles in Water. Scientific Reports, 2017, 7, 14007.	1.6	15
137	Quaternary Ammonium Dendrimers as Lewis Base Catalysts for Mukaiyama–Aldol Reaction. Chemistry Letters, 2005, 34, 420-421.	0.7	14
138	Complete Hydrodechlorination of DDT and Its Derivatives Using a Hydroxyapatite-supported Pd Nanoparticle Catalyst. Chemistry Letters, 2010, 39, 49-51.	0.7	14
139	Remarkable Effect of Bases on Core–Shell AgNP@CeO2 Nanocomposite-catalyzed Highly Chemoselective Reduction of Unsaturated Aldehydes. Chemistry Letters, 2013, 42, 660-662.	0.7	14
140	On-demand Hydrogen Production from Organosilanes at Ambient Temperature Using Heterogeneous Gold Catalysts. Scientific Reports, 2016, 6, 37682.	1.6	14
141	Air-stable and reusable cobalt ion-doped titanium oxide catalyst for alkene hydrosilylation. Green Chemistry, 2019, 21, 4566-4570.	4.6	14
142	Shape- and Size-controlled Synthesis of Tetrahedral Pd Nanoparticles Using Tetranuclear Pd Cluster as Precursor. Chemistry Letters, 2006, 35, 276-277.	0.7	13
143	Highly Efficient Condensation of Glycerol to Cyclic Acetals Catalyzed by Titanium-Exchanged Montmorillonite. Heterocycles, 2012, 84, 371.	0.4	13
144	Highly efficient heterogeneous acylations of aromatic compounds with acid anhydrides and carboxylic acids by montmorillonite-enwrapped titanium as a solid acid catalyst. Research on Chemical Intermediates, 2006, 32, 305-315.	1.3	12

#	Article	IF	CITATIONS
145	Effects of Dissolved and Ambient Gases on Sonochemical Degradation of Methylene Blue in High-Amplitude Resonant Mode. Japanese Journal of Applied Physics, 2006, 45, 4678-4683.	0.8	12
146	Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. Jacs Au, 2022, 2, 419-427.	3.6	12
147	Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst. Jacs Au, 2022, 2, 665-672.	3.6	12
148	Wireless electrodeless piezomagnetic biosensor with an isolated nickel oscillator. Biosensors and Bioelectronics, 2006, 21, 2001-2005.	5.3	11
149	Highly atom-efficient and chemoselective reduction of ketones in the presence of aldehydes using heterogeneous catalysts. Green Chemistry, 2013, 15, 2695.	4.6	11
150	A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Scientific Reports, 2021, 11, 10673.	1.6	10
151	Efficient Dâ€Xylose Hydrogenation to Dâ€Xylitol over a Hydrotalciteâ€Supported Nickel Phosphide Nanoparticle Catalyst. European Journal of Inorganic Chemistry, 2021, 2021, 3327-3331.	1.0	9
152	Regioselective oxidative coupling of 2,6-dimethylphenol to tetramethyldiphenoquinone using polyamine dendrimer-encapsulated Cu catalysts. RSC Advances, 2013, 3, 9662.	1.7	8
153	Catalysis by polymer-bound Rh6 carbonyl clusters Selective hydrogenation of carbonyl compounds in the presence of CO and H2O. Applied Surface Science, 1997, 121-122, 360-365.	3.1	7
154	Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials. Molecules, 2015, 20, 3089-3106.	1.7	7
155	Effective management of polyethers through depolymerization to symmetric and unsymmetric glycol diesters using a proton-exchanged montmorillonite catalyst. Green Chemistry, 2017, 19, 2612-2619.	4.6	7
156	A copper nitride catalyst for the efficient hydroxylation of aryl halides under ligand-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 6593-6597.	1.5	7
157	Highly Chemoselective Reduction of Aldehyde Function Catalyzed by Polymer-Bound Rh6 Cluster Complex under Water-Gas Shift Reaction Conditions. Tetrahedron Letters, 1997, 38, 3005-3008.	0.7	6
158	Dimethylaminoethylated hydroxypropyl-chitosan: Preparation and application as polymeric ligand to form Rh6 cluster complexes for the reduction of benzaldehyde and nitrobenzene. Journal of Applied Polymer Science, 2001, 80, 447-453.	1.3	6
159	Novel Catalysis in the Internal Nanocavity of Polyamine Dendrimer for Intramolecular Michael Reaction. Chemistry Letters, 2012, 41, 801-803.	0.7	6
160	INTRAMOLECULAR CYCLIZATION OF Î ³ -ACETYLENIC ACIDS USING DENDRIMER-ENCAPSULATED Pd2+ CATALYSTS. Heterocycles, 2012, 86, 947.	0.4	6
161	Hydrotalcite-bound ruthenium as a multifunctional heterogeneous catalyst for one-pot synthesis of α-alkylated nitriles and quinolines. Research on Chemical Intermediates, 2008, 34, 475-486.	1.3	5
162	Synthesis of dimethylaminoethyl chitin and applications as a polymeric ligand to form Rh cluster complexes for the reduction of benzaldehyde and nitrobenzene. Macromolecular Chemistry and Physics, 2000, 201, 1431-1435.	1.1	4

Томоо Мізидакі

#	Article	IF	CITATIONS
163	XAFS study on active Pr sites in zeolite as a photocatalyst for decomposition of nitrous oxide. Journal of Synchrotron Radiation, 2001, 8, 481-483.	1.0	4
164	Synthesis of tetraline derivatives through depolymerization of polyethers with aromatic compounds using a heterogeneous titanium-exchanged montmorillonite catalyst. RSC Advances, 2016, 6, 89231-89233.	1.7	4
165	A dual-functional heterogeneous ruthenium catalyst for the green one-pot synthesis of biphenols. Catalysis Science and Technology, 2017, 7, 3205-3209.	2.1	4
166	Oxidative cross-coupling reaction of catechols with active methylene compounds in an aqueous medium using an AlPO ₄ -supported Ru catalyst. Catalysis Science and Technology, 2018, 8, 5401-5405.	2.1	4
167	Efficient Synthesis of Benzofurans via Crossâ€Coupling of Catechols with Hydroxycoumarins Using O ₂ as an Oxidant Catalyzed by AlPO ₄ â€Supported Rh Nanoparticle. ChemistrySelect, 2019, 4, 11394-11397.	0.7	4
168	H 2 â€Free Selective Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts. ChemCatChem, 2021, 13, 1135-1139.	1.8	4
169	Depolymerization of Polyethers to Chloroesters Using Heterogeneous Proton-exchanged Montmorillonite Catalyst. ChemistrySelect, 2016, 1, 201-204.	0.7	3
170	Back Cover: Design of a Silver-Cerium Dioxide Core-Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions (Angew. Chem. Int. Ed. 1/2012). Angewandte Chemie - International Edition, 2012, 51, 278-278.	7.2	2
171	Simple and Efficient 1,3â€Isomerization of Allylic Alcohols using a Supported Monomeric Vanadiumâ€Oxide Catalyst. ChemCatChem, 2013, 5, 2879-2882.	1.8	2
172	Synthesis of glycol diesters through the depolymerization of polyethylene glycols with carboxylic acids using a proton-exchanged montmorillonite catalyst. Tetrahedron Letters, 2018, 59, 832-835.	0.7	2
173	Michael Reaction of 1,3-Dicarbonyls with Enones Catalyzed by a Hydroxyapatite-Bound La Complex ChemInform, 2005, 36, no.	0.1	1
174	A Single-Site Hydroxyapatite-Bound Zinc Catalyst for Highly Efficient Chemical Fixation of Carbon Dioxide with Epoxides ChemInform, 2005, 36, no.	0.1	1
175	Highly Efficient Oxidation of Alcohols to Carbonyl Compounds in the Presence of Molecular Oxygen Using a Novel Heterogeneous Ruthenium Catalyst ChemInform, 2002, 33, 55-55.	0.1	1
176	Inside Cover: Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes (Angew. Chem. Int. Ed. 32/2010). Angewandte Chemie - International Edition, 2010, 49, 5390-5390.	7.2	1
177	Size Selective Synthesis of Subnano Pd Clusters Using Core [Poly(propylene imine)]–Shell [Poly(benzyl) Tj ET(2q110.78	34314 rgBT
178	Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts ChemInform, 2003, 34, no.	0.1	0
179	Clean Synthesis of 3,3′,5,5′-Tetra-tert-butyl-4,4′-diphenoquinone from the Oxidative Coupling of 2,6-Di-tert-butylphenol Catalyzed by Alkali-promoted Cu—Mg—Al Hydrotalcites in the Presence of Molecular Oxygen ChemInform, 2003, 34, no.	0.1	0
180	Highly Selective Oxidation of Allylic Alcohols Catalyzed by Monodispersed 8-Shell Pd Nanoclusters in the Presence of Molecular Oxygen ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
181	Nanoscale Palladium Cluster Immobilized on a TiO2 Surface as an Efficient Catalyst for Liquid-Phase Wacker Oxidation of Higher Terminal Olefins ChemInform, 2003, 34, no.	0.1	0
182	Highly Efficient Dehydrogenation of Indolines to Indoles Using Hydroxyapatite-Bound Pd Catalyst ChemInform, 2003, 34, no.	0.1	0
183	Highly Efficient Deprotection of Acetals by Titanium Cation-Exchanged Montmorillonite as a Strong Solid Acid Catalyst ChemInform, 2003, 34, no.	0.1	Ο
184	Self-Assembled Dendrimer-Bound Pd(II) Complexes via Acid-Base Interactions and Their Catalysis for Allylic Amination ChemInform, 2003, 34, no.	0.1	0
185	A Novel Montmorillonite-Enwrapped Scandium as a Heterogeneous Catalyst for Michael Reaction ChemInform, 2004, 35, no.	0.1	0
186	Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Diels—Alder and Aldol Reactions ChemInform, 2004, 35, no.	0.1	0
187	Highly Efficient Esterification of Carboxylic Acids with Alcohols by Montmorillonite-Enwrapped Titanium as a Heterogeneous Acid Catalyst ChemInform, 2004, 35, no.	0.1	0
188	Supramolecular Catalysts by Encapsulating Palladium Complexes within Dendrimers ChemInform, 2004, 35, no.	0.1	0
189	A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols ChemInform, 2004, 35, no.	0.1	0
190	Multifunctional Catalysis of a Ruthenium-Grafted Hydrotalcite: One-Pot Synthesis of Quinolines from 2-Aminobenzyl Alcohol and Various Carbonyl Compounds via Aerobic Oxidation and Aldol Reaction ChemInform, 2004, 35, no.	0.1	0
191	Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen ChemInform, 2004, 35, no.	0.1	0
192	Quaternary Ammonium Dendrimers as Lewis Base Catalysts for Mukaiyama—Aldol Reaction ChemInform, 2005, 36, no.	0.1	0
193	Dendritic Nanoreactor Encapsulating Rh Complex Catalyst for Hydroformylation ChemInform, 2005, 36, no.	0.1	0
194	An Acidic Layered Clay Is Combined with a Basic Layered Clay for One-Pot Sequential Reactions ChemInform, 2005, 36, no.	0.1	0
195	One-Pot Synthesis of α-Alkylated Nitriles with Carbonyl Compounds Through Consecutive Aldol Reaction/Hydrogenation Using a Hydrotalcite-Supported Palladium Nanoparticle as a Multifunctional Heterogeneous Catalyst ChemInform, 2005, 36, no.	0.1	0
196	Catalytic Investigations of Carbon—Carbon Bond-Forming Reactions by a Hydroxyapatite-Bound Palladium Complex ChemInform, 2006, 37, no.	0.1	0
197	Highly Efficient Epoxidation of α,βâ€Unsaturated Ketones by Hydrogen Peroxide with a Base Hydrotalcite Catalyst Prepared from Metal Oxides ChemInform, 2002, 33, 58-58.	0.1	0
198	Titelbild: Wacker-Type Oxidation of Internal Olefins Using a PdCl2/N,N-Dimethylacetamide Catalyst System under Copper-Free Reaction Conditions (Angew. Chem. 7/2010). Angewandte Chemie, 2010, 122, 1189-1189.	1.6	0

#	Article	IF	CITATIONS
199	Innentitelbild: Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes (Angew. Chem. 32/2010). Angewandte Chemie, 2010, 122, 5518-5518.	1.6	Ο
200	Cover Picture: Wacker-Type Oxidation of Internal Olefins Using a PdCl2/N,N-Dimethylacetamide Catalyst System under Copper-Free Reaction Conditions (Angew. Chem. Int. Ed. 7/2010). Angewandte Chemie - International Edition, 2010, 49, 1169-1169.	7.2	0
201	Palladium Nanoclusters. , 0, , 3532-3539.		Ο