
Christina Kaiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3355728/publications.pdf Version: 2024-02-01

CHDISTINA KAISED

#	Article	IF	CITATIONS
1	Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Frontiers in Plant Science, 2019, 10, 157.	3.6	540
2	Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist, 2015, 205, 1537-1551.	7.3	370
3	Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13, 529-534.	12.9	363
4	Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 2010, 187, 843-858.	7.3	337
5	Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 2014, 17, 680-690.	6.4	302
6	Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME Journal, 2011, 5, 389-402.	9.8	273
7	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 2019, 9, 684-689.	18.8	269
8	Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change, 2018, 8, 885-889.	18.8	230
9	Microbial processes and community composition in the rhizosphere of European beech–ÂThe influence of plant C exudates. Soil Biology and Biochemistry, 2011, 43, 551-558.	8.8	170
10	Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biology and Biochemistry, 2010, 42, 1650-1652.	8.8	150
11	Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry, 2005, 19, 1401-1408.	1.5	145
12	Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biology and Biochemistry, 2013, 60, 95-104.	8.8	131
13	Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant and Soil, 2008, 307, 191-205.	3.7	126
14	Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. Journal of Geophysical Research, 2007, 112, .	3.3	118
15	Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology, 2011, 92, 1036-1051.	3.2	118
16	Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 2014, 87, 142-152.	2.7	108
17	Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Frontiers in Microbiology, 2019, 10, 168.	3.5	106
18	Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nature Communications, 2015, 6, 8960.	12.8	80

CHRISTINA KAISER

#	Article	IF	CITATIONS
19	Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Biology and Biochemistry, 2013, 67, 85-93.	8.8	78
20	Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Frontiers in Microbiology, 2014, 5, 541.	3.5	73
21	From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry, 2022, 169, 108604.	8.8	67
22	Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landscape Ecology, 2009, 24, 1149-1165.	4.2	62
23	Synergistic effects of diffusion and microbial physiology reproduce the Birch effect in a micro-scale model. Soil Biology and Biochemistry, 2016, 93, 28-37.	8.8	55
24	Optimization of Biomass Composition Explains Microbial Growth-Stoichiometry Relationships. American Naturalist, 2011, 177, E29-E42.	2.1	53
25	Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia. Applied Soil Ecology, 2005, 29, 173-183.	4.3	40
26	Recognizing Patterns: Spatial Analysis of Observed Microbial Colonization on Root Surfaces. Frontiers in Environmental Science, 2018, 6, .	3.3	38
27	A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biology and Biochemistry, 2021, 160, 108357.	8.8	36
28	Microtopography and Plant-Cover Controls on Nitrogen Dynamics in Hummock Tundra Ecosystems in Siberia. Arctic, Antarctic, and Alpine Research, 2005, 37, 435-443.	1.1	33
29	Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia. Biogeochemistry, 2006, 81, 239-252.	3.5	27
30	Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO ₂ , warming, and drought. Global Change Biology, 2022, 28, 2425-2441.	9.5	25
31	Editorial: Rhizosphere Functioning and Structural Development as Complex Interplay Between Plants, Microorganisms and Soil Minerals. Frontiers in Environmental Science, 2019, 7, .	3.3	19
32	Recently photoassimilated carbon and fungusâ€delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of <i>Fagus sylvatica</i> . New Phytologist, 2021, 232, 2457-2474.	7.3	19
33	Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology, 2011, 92, 1036-1051.	3.2	19