List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354394/publications.pdf Version: 2024-02-01

	7568	16183
18,773	77	124
citations	h-index	g-index
291	291	13780
docs citations	times ranked	citing authors
	citations 291	18,773 77 citations h-index 291 291

#	Article	IF	CITATIONS
1	Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	9.1	970
2	Zygomycosis in a Tertiaryâ€Care Cancer Center in the Era of <i>Aspergillusâ€</i> Active Antifungal Therapy: A Caseâ€Control Observational Study of 27 Recent Cases. Journal of Infectious Diseases, 2005, 191, 1350-1360.	4.0	659
3	Delaying Amphotericin B–Based Frontline Therapy Significantly Increases Mortality among Patients with Hematologic Malignancy Who Have Zygomycosis. Clinical Infectious Diseases, 2008, 47, 503-509.	5.8	639
4	Antifungal drug resistance of pathogenic fungi. Lancet, The, 2002, 359, 1135-1144.	13.7	380
5	Invasive fungal infections in patients with hematologic malignancies in a tertiary care cancer center: an autopsy study over a 15-year period (1989-2003). Haematologica, 2006, 91, 986-9.	3.5	357
6	Mucormycosis Caused by Unusual Mucormycetes, Non-Rhizopus, -Mucor, and -Lichtheimia Species. Clinical Microbiology Reviews, 2011, 24, 411-445.	13.6	340
7	Epidemiology of Invasive Pulmonary Aspergillosis Among Intubated Patients With COVID-19: A Prospective Study. Clinical Infectious Diseases, 2021, 73, e3606-e3614.	5.8	335
8	Predictors of Pulmonary Zygomycosis versus Invasive Pulmonary Aspergillosis in Patients with Cancer. Clinical Infectious Diseases, 2005, 41, 60-66.	5.8	322
9	Current Concepts in Antifungal Pharmacology. Mayo Clinic Proceedings, 2011, 86, 805-817.	3.0	305
10	Combination of Voriconazole and Caspofungin as Primary Therapy for Invasive Aspergillosis in Solid Organ Transplant Recipients: A Prospective, Multicenter, Observational Study. Transplantation, 2006, 81, 320-326.	1.0	297
11	How I treat mucormycosis. Blood, 2011, 118, 1216-1224.	1.4	282
12	Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergillosis in patients with hematologic malignancies. Cancer, 2003, 98, 292-299.	4.1	279
13	Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion. Intensive Care Medicine, 2020, 46, 1524-1535.	8.2	278
14	Influence of Test Conditions on Antifungal Time-Kill Curve Results: Proposal for Standardized Methods. Antimicrobial Agents and Chemotherapy, 1998, 42, 1207-1212.	3.2	260
15	Pharmacology of Systemic Antifungal Agents. Clinical Infectious Diseases, 2006, 43, S28-S39.	5.8	253
16	Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001â€2007). Cancer, 2009, 115, 4745-4752.	4.1	236
17	Invasive Zygomycosis: Update on Pathogenesis, Clinical Manifestations, and Management. Infectious Disease Clinics of North America, 2006, 20, 581-607.	5.1	219
18	Pharmacodynamics of Polymyxin B against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2005, 49, 3624-3630.	3.2	198

#	Article	IF	CITATIONS
19	Epidemiology and sites of involvement of invasive fungal infections in patients with haematological malignancies: a 20â€year autopsy study. Mycoses, 2013, 56, 638-645.	4.0	198
20	Pharmacodynamics of Caspofungin in a Murine Model of Invasive Pulmonary Aspergillosis: Evidence of Concentrationâ€Dependent Activity. Journal of Infectious Diseases, 2004, 190, 1464-1471.	4.0	195
21	Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood, 2005, 105, 2258-2265.	1.4	183
22	Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: a prospective observational multicentre study. Clinical Microbiology and Infection, 2014, 20, 1357-1362.	6.0	182
23	Caspofunginâ€Mediated βâ€Glucan Unmasking and Enhancement of Human Polymorphonuclear Neutrophil Activity against <i>Aspergillus</i> and Nonâ€ <i>Aspergillus</i> Hyphae. Journal of Infectious Diseases, 2008, 198, 186-192.	4.0	174
24	Detection of Gliotoxin in Experimental and Human Aspergillosis. Infection and Immunity, 2005, 73, 635-637.	2.2	171
25	Paradoxical Effect of Echinocandins across Candida Species In Vitro: Evidence for Echinocandin-Specific and Candida Species-Related Differences. Antimicrobial Agents and Chemotherapy, 2007, 51, 2257-2259.	3.2	160
26	Scedosporium Infection in a Tertiary Care Cancer Center: A Review of 25 Cases from 1989-2006. Clinical Infectious Diseases, 2006, 43, 1580-1584.	5.8	155
27	Increased bone marrow iron stores is an independent risk factor for invasive aspergillosis in patients with highâ€risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation. Cancer, 2007, 110, 1303-1306.	4.1	148
28	Invasive fusariosis in patients with hematologic malignancies at a cancer center: 1998–2009. Journal of Infection, 2010, 60, 331-337.	3.3	145
29	Combination Therapy for Mucormycosis: Why, What, and How?. Clinical Infectious Diseases, 2012, 54, S73-S78.	5.8	139
30	Treatment of carbapenem-resistant <i>Klebsiella pneumoniae</i> : the state of the art. Expert Review of Anti-Infective Therapy, 2013, 11, 159-177.	4.4	139
31	The echinocandin antifungals: an overview of the pharmacology, spectrum and clinical efficacy. Expert Opinion on Investigational Drugs, 2003, 12, 1313-1333.	4.1	130
32	Attenuation of the Activity of Caspofungin at High Concentrations against Candida albicans : Possible Role of Cell Wall Integrity and Calcineurin Pathways. Antimicrobial Agents and Chemotherapy, 2005, 49, 5146-5148.	3.2	127
33	In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. Journal of Antimicrobial Chemotherapy, 2018, 73, 1525-1529.	3.0	126
34	Immunocompromised Hosts: Immunopharmacology of Modern Antifungals. Clinical Infectious Diseases, 2008, 47, 226-235.	5.8	125
35	Fungal Infections in Leukemia Patients: How Do We Prevent and Treat Them?. Clinical Infectious Diseases, 2010, 50, 405-415.	5.8	125
36	Fitness and Virulence Costs of Candida albicans FKS1 Hot Spot Mutations Associated With Fchinocandin Resistance, Journal of Infectious Diseases, 2011, 204, 626-635	4.0	124

#	Article	IF	CITATIONS
37	Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. Journal of Infection, 2012, 64, 68-75.	3.3	124
38	<i>Drosophila melanogaster</i> as a model host to dissect the immunopathogenesis of zygomycosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9367-9372.	7.1	123
39	Caspofungin-Resistant <i>Candida tropicalis</i> Strains Causing Breakthrough Fungemia in Patients at High Risk for Hematologic Malignancies. Antimicrobial Agents and Chemotherapy, 2008, 52, 4181-4183.	3.2	119
40	Increased Virulence of Zygomycetes Organisms Following Exposure to Voriconazole: A Study Involving Fly and Murine Models of Zygomycosis. Journal of Infectious Diseases, 2009, 199, 1399-1406.	4.0	117
41	Phaeohyphomycosis in a Tertiary Care Cancer Center. Clinical Infectious Diseases, 2009, 48, 1033-1041.	5.8	116
42	Candidemia in a Tertiary Care Cancer Center. Medicine (United States), 2003, 82, 309-321.	1.0	113
43	Lovastatin Has Significant Activity against Zygomycetes and Interacts Synergistically with Voriconazole. Antimicrobial Agents and Chemotherapy, 2006, 50, 96-103.	3.2	112
44	In Vitro Pharmacodynamics of Amphotericin B, Itraconazole, and Voriconazole against <i>Aspergillus</i> , <i>Fusarium</i> , and <i>Scedosporium</i> spp. Antimicrobial Agents and Chemotherapy, 2005, 49, 945-951.	3.2	111
45	Enemy of the (immunosuppressed) state: an update on the pathogenesis of <i>Aspergillus fumigatus</i> infection. British Journal of Haematology, 2010, 150, 406-417.	2.5	111
46	Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. Journal of Antimicrobial Chemotherapy, 2003, 51, 313-316.	3.0	110
47	Larger Size of Donor Alloreactive NK Cell Repertoire Correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia Patients. Clinical Cancer Research, 2016, 22, 1914-1921.	7.0	110
48	Voriconazole-associated zygomycosis: a significant consequence of evolving antifungal prophylaxis and immunosuppression practices?. Clinical Microbiology and Infection, 2009, 15, 93-97.	6.0	106
49	Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis. Intensive Care Medicine, 2021, 47, 819-834.	8.2	106
50	Drosophila melanogasteras a Facile Model for Large cale Studies of Virulence Mechanisms and Antifungal Drug Efficacy inCandidaSpecies. Journal of Infectious Diseases, 2006, 193, 1014-1022.	4.0	105
51	Epidemiology and outcomes of bloodstream infection in patients with cirrhosis. Journal of Hepatology, 2014, 61, 51-58.	3.7	104
52	Evaluation of Voriconazole Pharmacodynamics Using Time-Kill Methodology. Antimicrobial Agents and Chemotherapy, 2000, 44, 1917-1920.	3.2	101
53	Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. Journal of Antimicrobial Chemotherapy, 2004, 54, 376-385.	3.0	100
54	Invasive aspergillosis in glucocorticoid-treated patients. Medical Mycology, 2009, 47, S271-S281.	0.7	100

#	Article	IF	CITATIONS
55	Stimulated Innate Resistance of Lung Epithelium Protects Mice Broadly against Bacteria and Fungi. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 40-50.	2.9	100
56	Klebsiella pneumoniae Bloodstream Infection. Medicine (United States), 2014, 93, 298-309.	1.0	100
57	Frequency and Species Distribution of Gliotoxin-Producing Aspergillus Isolates Recovered from Patients at a Tertiary-Care Cancer Center. Journal of Clinical Microbiology, 2005, 43, 6120-6122.	3.9	99
58	Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood, 2009, 114, 5393-5399.	1.4	99
59	Synergistic Activity of Colistin plus Rifampin against Colistin-Resistant KPC-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2013, 57, 3990-3993.	3.2	99
60	Risk Factors for Infection With Carbapenem-Resistant Klebsiella pneumoniae. American Journal of Transplantation, 2015, 15, 1708-1715.	4.7	99
61	Pulmonary Candidiasis in Patients with Cancer: An Autopsy Study. Clinical Infectious Diseases, 2002, 34, 400-403.	5.8	98
62	Rationale for Combination Antifungal Therapy. Pharmacotherapy, 2001, 21, 149S-164S.	2.6	95
63	Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagnostic Microbiology and Infectious Disease, 2002, 43, 13-17.	1.8	94
64	Antifungal Activity of Amphotericin B, Fluconazole, and Voriconazole in an In Vitro Model of Candida Catheter-Related Bloodstream Infection. Antimicrobial Agents and Chemotherapy, 2002, 46, 3499-3505.	3.2	93
65	Pharmacodynamic Activity of Amphotericin B Deoxycholate Is Associated with Peak Plasma Concentrations in a Neutropenic Murine Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 469-473.	3.2	92
66	Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 735-738.	3.2	91
67	Epidemiology and treatment of mucormycosis. Future Microbiology, 2013, 8, 1163-1175.	2.0	89
68	Itraconazole Preexposure Attenuates the Efficacy of Subsequent Amphotericin B Therapy in a Murine Model of Acute Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2002, 46, 3208-3214.	3.2	88
69	A clinicopathological study of pulmonary mucormycosis in cancer patients: Extensive angioinvasion but limited inflammatory response. Journal of Infection, 2009, 59, 134-138.	3.3	88
70	Assessment of Antifungal Activities of Fluconazole and Amphotericin B Administered Alone and in Combination against <i>Candida albicans</i> by Using a Dynamic In Vitro Mycotic Infection Model. Antimicrobial Agents and Chemotherapy, 1998, 42, 1382-1386.	3.2	87
71	Echinocandin Resistance in <i>Candida</i> Species: Mechanisms of Reduced Susceptibility and Therapeutic Approaches. Annals of Pharmacotherapy, 2012, 46, 1086-1096.	1.9	87
72	<i>Zygomycetes</i> Hyphae Trigger an Early, Robust Proinflammatory Response in Human Polymorphonuclear Neutrophils through Toll-Like Receptor 2 Induction but Display Relative Resistance to Oxidative Damage. Antimicrobial Agents and Chemotherapy, 2008, 52, 722-724.	3.2	86

#	Article	IF	CITATIONS
73	Tollâ€DeficientDrosophilaFlies as a Fast, Highâ€Throughput Model for the Study of Antifungal Drug Efficacy against Invasive Aspergillosis andAspergillusVirulence. Journal of Infectious Diseases, 2005, 191, 1188-1195.	4.0	84
74	Candida lusitaniaefungemia in cancer patients: risk factors for amphotericin B failure and outcome. Medical Mycology, 2008, 46, 541-546.	0.7	83
75	High Resolution Computed Tomography Angiography Improves the Radiographic Diagnosis of Invasive Mold Disease in Patients With Hematological Malignancies. Clinical Infectious Diseases, 2015, 60, 1603-1610.	5.8	83
76	Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. Journal of Infectious Diseases, 2020, 222, S175-S198.	4.0	83
77	Predictors of mortality in multidrug-resistant <i>Klebsiella pneumoniae</i> bloodstream infections. Expert Review of Anti-Infective Therapy, 2013, 11, 1053-1063.	4.4	82
78	Breakthrough Invasive Mold Infections in the Hematology Patient: Current Concepts and Future Directions. Clinical Infectious Diseases, 2018, 67, 1621-1630.	5.8	82
79	Role of mini-host models in the study of medically important fungi. Lancet Infectious Diseases, The, 2007, 7, 42-55.	9.1	81
80	Increased frequency of non-fumigatus Aspergillus species in amphotericin B– or triazole–pre-exposed cancer patients with positive cultures for aspergilli. Diagnostic Microbiology and Infectious Disease, 2005, 52, 15-20.	1.8	78
81	Toward more effective antifungal therapy: the prospects of combination therapy. British Journal of Haematology, 2004, 126, 165-175.	2.5	75
82	Supplement: Trends in invasive <i>Candida</i> infections and their treatment: focus on echinocandins. Current Medical Research and Opinion, 2009, 25, 1729-1762.	1.9	74
83	Clinical Pharmacokinetics, Pharmacodynamics, Safety and Efficacy of Liposomal Amphotericin B. Clinical Infectious Diseases, 2019, 68, S260-S274.	5.8	73
84	Itraconazole-Amphotericin B Antagonism in Aspergillus fumigatus : an E-Test-Based Strategy. Antimicrobial Agents and Chemotherapy, 2000, 44, 2915-2918.	3.2	72
85	Aspergillus nidulansis frequently resistant to amphotericin B. Mycoses, 2002, 45, 406-407.	4.0	72
86	In vitro activity and post-antibiotic effects of colistin in combination with other antimicrobials against colistin-resistant KPC-producing Klebsiella pneumoniae bloodstream isolates. Journal of Antimicrobial Chemotherapy, 2014, 69, 1856-1865.	3.0	71
87	Caspofungin as Primary Antifungal Prophylaxis in Stem Cell Transplant Recipients. Pharmacotherapy, 2007, 27, 1644-1650.	2.6	69
88	Comparative Pharmacodynamics of Amphotericin B Lipid Complex and Liposomal Amphotericin B in a Murine Model of Pulmonary Mucormycosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1298-1304.	3.2	69
89	Bloodstream infections in patients with liver cirrhosis. Virulence, 2016, 7, 309-319.	4.4	67
90	Effect of Amphotericin B and Micafungin Combination on Survival, Histopathology, and Fungal Burden in Experimental Aspergillosis in the p47 ^{<i>phox</i>} ^{â^'} [/] ^{â^'} Mouse Model of Chronic Granulomatous Disease. Antimicrobial Agents and Chemotherapy, 2006, 50, 422-427.	3.2	66

#	Article	IF	CITATIONS
91	Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?. Frontiers in Microbiology, 2018, 9, 516.	3.5	66
92	Comparative Analysis of Amphotericin B Lipid Complex and Liposomal Amphotericin B Kinetics of Lung Accumulation and Fungal Clearance in a Murine Model of Acute Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 1253-1258.	3.2	64
93	Impact of a hospital-wide multifaceted programme for reducing carbapenem-resistant Enterobacteriaceae infections in a large teaching hospital in northern Italy. Clinical Microbiology and Infection, 2015, 21, 242-247.	6.0	63
94	Lack of Catheter Infection by the efg1 / efg1 cph1 / cph1 Double-Null Mutant, a Candida albicans Strain That Is Defective in Filamentous Growth. Antimicrobial Agents and Chemotherapy, 2002, 46, 1153-1155.	3.2	62
95	Risk factors for infections in myelofibrosis: role of disease status and treatment. A multicenter study of 507 patients. American Journal of Hematology, 2017, 92, 37-41.	4.1	62
96	Effects <i>of Aspergillus fumigatus</i> gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. Journal of Leukocyte Biology, 2007, 82, 839-848.	3.3	61
97	Combination chemotherapy for invasive fungal infections: what laboratory and clinical studies tell us so far. Drug Resistance Updates, 2003, 6, 257-269.	14.4	57
98	Aspergillosis caused by non-fumigatus Aspergillus species: risk factors and in vitro susceptibility compared with Aspergillus fumigatus. Diagnostic Microbiology and Infectious Disease, 2003, 46, 25-28.	1.8	57
99	Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis. Journal of Antimicrobial Chemotherapy, 2008, 61, 1140-1144.	3.0	57
100	Computed Tomographic Pulmonary Angiography for Diagnosis of Invasive Mold Diseases in Patients With Hematological Malignancies. Clinical Infectious Diseases, 2012, 54, 610-616.	5.8	57
101	Antifungal Activity of Colistin against <i>Mucorales</i> Species <i>In Vitro</i> and in a Murine Model of <i>Rhizopus oryzae</i> Pulmonary Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 484-490.	3.2	56
102	Vancomycin-Resistant Enterococcus faecium : Catheter Colonization, esp Gene, and Decreased Susceptibility to Antibiotics in Biofilm. Antimicrobial Agents and Chemotherapy, 2005, 49, 5046-5050.	3.2	55
103	Tacrolimus Enhances the Potency of Posaconazole Against Rhizopus oryzae In Vitro and in an Experimental Model of Mucormycosis. Journal of Infectious Diseases, 2013, 207, 834-841.	4.0	55
104	Oral Gentamicin Gut Decontamination for Prevention of KPC-Producing Klebsiella pneumoniae Infections: Relevance of Concomitant Systemic Antibiotic Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 1972-1976.	3.2	55
105	Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. International Journal of Antimicrobial Agents, 2018, 51, 244-248.	2.5	55
106	Fungal endophthalmitis in a tertiary care cancer center: a review of 23 cases. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 343-347.	2.9	54
107	Extra Copies of the Aspergillus fumigatus Squalene Epoxidase Gene Confer Resistance to Terbinafine: Genetic Approach to Studying Gene Dose-Dependent Resistance to Antifungals in A. fumigatus. Antimicrobial Agents and Chemotherapy, 2004, 48, 2490-2496.	3.2	52
108	How Does Antifungal Pharmacology Differ for Mucormycosis Versus Aspergillosis?. Clinical Infectious Diseases, 2012, 54, S67-S72.	5.8	51

#	Article	IF	CITATIONS
109	A Risk Prediction Score for Invasive Mold Disease in Patients with Hematological Malignancies. PLoS ONE, 2013, 8, e75531.	2.5	51
110	Changes in In Vitro Susceptibility Patterns of Aspergillus to Triazoles and Correlation With Aspergillosis Outcome in a Tertiary Care Cancer Center, 1999–2015. Clinical Infectious Diseases, 2017, 65, 216-225.	5.8	50
111	Navigating the Uncertainties of COVID-19–Associated Aspergillosis: A Comparison With Influenza-Associated Aspergillosis. Journal of Infectious Diseases, 2021, , .	4.0	50
112	Invasive Aspergillosis in Patients with Hematologic Malignancies. Pharmacotherapy, 2003, 23, 1592-1610.	2.6	49
113	Managing drug interactions in the patient with aspergillosis. Medical Mycology, 2006, 44, 349-356.	0.7	49
114	Incidence Density of Invasive Fungal Infections during Primary Antifungal Prophylaxis in Newly Diagnosed Acute Myeloid Leukemia Patients in a Tertiary Cancer Center, 2009 to 2011. Antimicrobial Agents and Chemotherapy, 2014, 58, 865-873.	3.2	49
115	Increased Culture Recovery of Zygomycetes Under Physiologic Temperature Conditions. American Journal of Clinical Pathology, 2007, 127, 208-212.	0.7	48
116	Antibacterial activity of linezolid and vancomycin in an in vitro pharmacodynamic model of Gram-positive catheter-related bacteraemia. Journal of Antimicrobial Chemotherapy, 2005, 55, 792-795.	3.0	47
117	Investigational Antifungal Agents for Invasive Mycoses: A Clinical Perspective. Clinical Infectious Diseases, 2022, 75, 534-544.	5.8	47
118	The Solubility Ceiling: A Rationale for Continuous Infusion Amphotericin B Therapy?. Clinical Infectious Diseases, 2003, 37, 871-872.	5.8	46
119	Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of <i>Aspergillus fumigatus</i> - <i>Rhizopus oryzae</i> pulmonary infection. Virulence, 2011, 2, 348-355.	4.4	46
120	Pretreatment with Empty Liposomes Attenuates the Immunopathology of Invasive Pulmonary Aspergillosis in Corticosteroid-Immunosuppressed Mice. Antimicrobial Agents and Chemotherapy, 2007, 51, 1078-1081.	3.2	45
121	What Is the "Therapeutic Range" for Voriconazole?. Clinical Infectious Diseases, 2008, 46, 212-214.	5.8	45
122	<i>Candida albicans</i> Cas5, a Regulator of Cell Wall Integrity, Is Required for Virulence in Murine and <i>Toll</i> Mutant Fly Models. Journal of Infectious Diseases, 2009, 200, 152-157.	4.0	43
123	Future Directions in Mucormycosis Research. Clinical Infectious Diseases, 2012, 54, S79-S85.	5.8	42
124	Comparative Pharmacodynamics of Posaconazole in Neutropenic Murine Models of Invasive Pulmonary Aspergillosis and Mucormycosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6767-6772.	3.2	42
125	Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection?. Lancet Haematology,the, 2021, 8, e216-e228.	4.6	41
126	In vitro pharmacodynamic characteristics of flucytosine determined by time-kill methodsâ~†. Diagnostic Microbiology and Infectious Disease, 2000, 36, 101-105.	1.8	40

#	Article	lF	CITATIONS
127	Considerations About Antimicrobial Stewardship in Settings with Epidemic Extended-Spectrum β-Lactamase-Producing or Carbapenem-Resistant Enterobacteriaceae. Infectious Diseases and Therapy, 2015, 4, 65-83.	4.0	40
128	Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clinical Infectious Diseases, 2019, 68, S244-S259.	5.8	40
129	Mucorales-Specific T Cells in Patients with Hematologic Malignancies. PLoS ONE, 2016, 11, e0149108.	2.5	40
130	Virulence Studies of <i>Scedosporium</i> and <i>Fusarium</i> Species in <i>Drosophila melanogaster</i> . Journal of Infectious Diseases, 2007, 196, 1860-1864.	4.0	39
131	Effectiveness of Primary Anti-Aspergillus Prophylaxis during Remission Induction Chemotherapy of Acute Myeloid Leukemia. Antimicrobial Agents and Chemotherapy, 2014, 58, 2775-2780.	3.2	39
132	Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Current Opinion in Pharmacology, 2015, 24, 30-37.	3.5	39
133	In vitro interaction of ceftazidime–avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. International Journal of Infectious Diseases, 2017, 65, 1-3.	3.3	39
134	Inhibition of Candida parapsilosis Mitochondrial Respiratory Pathways Enhances Susceptibility to Caspofungin. Antimicrobial Agents and Chemotherapy, 2006, 50, 744-747.	3.2	38
135	The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence, 2012, 3, 368-376.	4.4	38
136	The changing face of nosocomial candidemia: epidemiology, resistance, and drug therapy. American Journal of Health-System Pharmacy, 1999, 56, 525-533.	1.0	37
137	Caspofungin-non-susceptible Candida isolates in cancer patients. Journal of Antimicrobial Chemotherapy, 2010, 65, 293-295.	3.0	37
138	Evaluation of amphotericin B and flucytosine in combination against Candida albicans and Cryptococcus neoformans using time-kill methodology. Diagnostic Microbiology and Infectious Disease, 2001, 41, 121-126.	1.8	36
139	AspergillusSusceptibility Testing in Patients with Cancer and Invasive Aspergillosis: Difficulties in Establishing Correlation Between In Vitro Susceptibility Data and the Outcome of Initial Amphotericin B Therapy. Pharmacotherapy, 2005, 25, 1174-1180.	2.6	36
140	Influence of host immunosuppression on CT findings in invasive pulmonary aspergillosis. Medical Mycology, 2010, 48, 817-823.	0.7	36
141	Role and Interpretation of Antifungal Susceptibility Testing for the Management of Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2021, 7, 17.	3.5	36
142	Routine use of a real-time polymerase chain reaction method for detection of bloodstream infections in neutropaenic patients. Diagnostic Microbiology and Infectious Disease, 2013, 75, 130-134.	1.8	35
143	Novel Approach to Characterization of Combined Pharmacodynamic Effects of Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 2004, 48, 4315-4321.	3.2	34
144	Antifungal activity againstScedosporiumspecies and novel assays to assess antifungal pharmacodynamics against filamentous fungi. Medical Mycology, 2009, 47, 422-432.	0.7	34

#	Article	IF	CITATIONS
145	Micafungin in combination with voriconazole in Aspergillus species: a pharmacodynamic approach for detection of combined antifungal activity in vitro. Journal of Antimicrobial Chemotherapy, 2005, 56, 887-892.	3.0	33
146	Pharmacodynamic implications for use of antifungal agents. Current Opinion in Pharmacology, 2007, 7, 491-497.	3.5	33
147	Interstrain variability in the virulence of <i>Aspergillus fumigatus</i> and <i>Aspergillus terreus</i> in a <i>Toll</i> -deficient <i>Drosophila</i> fly model of invasive aspergillosis. Medical Mycology, 2010, 48, 310-317.	0.7	32
148	Effects of liposomal amphotericin B versus an amphotericin B lipid complex on liver histopathology in patients with hematologic malignancies and invasive fungal infections: A retrospective, nonrandomized autopsy study. Clinical Therapeutics, 2007, 29, 1980-1986.	2.5	31
149	Invasive mould infections in the setting of hematopoietic cell transplantation: current trends and new challenges. Current Opinion in Infectious Diseases, 2009, 22, 376-384.	3.1	31
150	Cutaneous Model of Invasive Aspergillosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1848-1854.	3.2	31
151	Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of <i>Candida</i> and <i>Aspergillus</i> species. Virulence, 2011, 2, 280-295.	4.4	31
152	Impaired bactericidal but not fungicidal activity of polymorphonuclear neutrophils in patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 1730-1733.	1.3	31
153	Overview of antifungal dosing in invasive candidiasis. Journal of Antimicrobial Chemotherapy, 2018, 73, i33-i43.	3.0	31
154	Prognostic Utility of the New Definition of Difficult-to-Treat Resistance Among Patients With Gram-Negative Bloodstream Infections. Open Forum Infectious Diseases, 2019, 6, ofz505.	0.9	31
155	Statin Concentrations Below the Minimum Inhibitory Concentration Attenuate the Virulence of <i>Rhizopus oryzae </i> . Journal of Infectious Diseases, 2016, 214, 114-121.	4.0	30
156	Invasive Mold Infections in Pediatric Cancer Patients Reflect Heterogeneity in Etiology, Presentation, and Outcome: A 10-Year, Single-Institution, Retrospective Study. Journal of the Pediatric Infectious Diseases Society, 2012, 1, 125-135.	1.3	29
157	Extended Infusion of β-Lactams for Bloodstream Infection in Patients With Liver Cirrhosis: An Observational Multicenter Study. Clinical Infectious Diseases, 2019, 69, 1731-1739.	5.8	29
158	Management of drug–drug interactions of targeted therapies for haematological malignancies and triazole antifungal drugs. Lancet Haematology,the, 2022, 9, e58-e72.	4.6	29
159	Evaluation of antifungals in the surgical intensive care unit: a multi-institutional study. Mycoses, 2006, 49, 226-231.	4.0	28
160	Random plasma concentrations of voriconazole decline over time. Journal of Infection, 2007, 55, e129-e130.	3.3	27
161	Exploring the concordance of <i>Aspergillus fumigatus</i> pathogenicity in mice and <i>Toll</i> -deficient flies. Medical Mycology, 2010, 48, 506-510.	0.7	27
162	Screening of Antibacterial and Antifungal Activities of Ten Medicinal Plants from Ghana. Pharmaceutical Biology, 2004, 42, 13-17.	2.9	26

#	Article	IF	CITATIONS
163	Pentamidine Is Active In Vitro against Fusarium Species. Antimicrobial Agents and Chemotherapy, 2003, 47, 3252-3259.	3.2	25
164	Risk factors for early mortality in haematological malignancy patients with pulmonary mucormycosis. Mycoses, 2014, 57, 49-55.	4.0	25
165	Antifungal prophylaxis in adult patients with acute myeloid leukaemia treated with novel targeted therapies: a systematic review and expert consensus recommendation from the European Hematology Association. Lancet Haematology,the, 2022, 9, e361-e373.	4.6	25
166	Murine Model of Invasive Aspergillosis. , 2005, 118, 129-142.		24
167	Antifungal Therapeutic Drug Monitoring. Current Fungal Infection Reports, 2010, 4, 158-167.	2.6	24
168	Activity of Deferasirox in <i>Mucorales</i> : Influences of Species and Exogenous Iron. Antimicrobial Agents and Chemotherapy, 2011, 55, 411-413.	3.2	24
169	High-dose Weekly Liposomal Amphotericin B Antifungal Prophylaxis in Patients Undergoing Liver Transplantation. Transplantation, 2015, 99, 848-854.	1.0	23
170	In vitro pharmacodynamics of rapid versus continuous infusion of amphotericin B deoxycholate against Candida species in the presence of human serum albumin. Journal of Antimicrobial Chemotherapy, 2006, 57, 288-293.	3.0	22
171	Efficacy of Single-Dose Liposomal Amphotericin B or Micafungin Prophylaxis in a Neutropenic Murine Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 4178-4180.	3.2	22
172	Proangiogenic Growth Factors Potentiate In Situ Angiogenesis and Enhance Antifungal Drug Activity in Murine Invasive Aspergillosis. Journal of Infectious Diseases, 2013, 207, 1066-1074.	4.0	22
173	Agents of Mucormycosis and Entomophthoramycosis. , 2010, , 3257-3269.		22
174	Therapy ofCandidaInfections: Susceptibility Testing, Resistance, and Therapeutic Options. Annals of Pharmacotherapy, 1998, 32, 1353-1361.	1.9	20
175	Live Monitoring and Analysis of Fungal Growth, Viability, and Mycelial Morphology Using the IncuCyte NeuroTrack Processing Module. MBio, 2019, 10, .	4.1	20
176	Development and internal validation of a model for predicting 60-day risk of invasive mould disease in patients with haematological malignancies. Journal of Infection, 2019, 78, 484-490.	3.3	20
177	Evaluation of Low-Dose, Extended-Interval Clindamycin Regimens against <i>Staphylococcus aureus</i> and <i>Streptococcus pneumoniae</i> Using a Dynamic In Vitro Model of Infection. Antimicrobial Agents and Chemotherapy, 1999, 43, 2005-2009.	3.2	19
178	Sequential exposure of Aspergillus fumigatus to itraconazole and caspofungin: evidence of enhanced in vitro activity. Diagnostic Microbiology and Infectious Disease, 2003, 47, 415-419.	1.8	19
179	The Burden of Bacterial and Viral Infections in Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2009, 15, 128-133.	2.0	19
180	Characterization of a 5-azacytidine-induced developmental <i>Aspergillus fumigatus</i> variant. Virulence, 2010, 1, 164-173.	4.4	19

#	Article	IF	CITATIONS
181	Saprochaete clavatainfections in patients undergoing treatment for haematological malignancies: A report of a monocentric outbreak and review of the literature. Mycoses, 2019, 62, 1100-1107.	4.0	19
182	Attenuation of Itraconazole Fungicidal Activity following Preexposure of Aspergillus fumigatus to Fluconazole. Antimicrobial Agents and Chemotherapy, 2003, 47, 3592-3597.	3.2	18
183	Weekly liposomal amphotericin B as secondary prophylaxis for invasive fungal infections in patients with hematological malignancies. Medical Mycology, 2012, 50, 543-548.	0.7	18
184	Treatment Principles for the Management of Mold Infections. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019737-a019737.	6.2	18
185	Retrospective Cohort Analysis of Liposomal Amphotericin B Nephrotoxicity in Patients with Hematological Malignancies. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	18
186	Combination Systemic Antifungal Therapy for Cryptococcosis, Candidiasis, and Aspergillosis. Journal of Public Health Pharmacy, 1998, 3, 61-84.	0.1	18
187	ETHICS: Enhanced: Constructing Ethical Guidelines for Biohistory. Science, 2004, 304, 215-216.	12.6	17
188	In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagnostic Microbiology and Infectious Disease, 2009, 64, 427-433.	1.8	17
189	Risk factors for recurrent carbapenem resistant Klebsiella pneumoniae bloodstream infection: a prospective cohort study. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1965-1970.	2.9	17
190	Invasive mould infections in solid organ transplant patients: modifiers and indicators of disease and treatment response. Infection, 2019, 47, 919-927.	4.7	17
191	Breakthrough Mucormycosis Developing on Mucorales-Active Antifungals Portrays a Poor Prognosis in Patients with Hematologic Cancer. Journal of Fungi (Basel, Switzerland), 2021, 7, 217.	3.5	17
192	Interstrain variability in the virulence of Aspergillus fumigatus and Aspergillus terreus in a Toll-deficient Drosophila fly model of invasive aspergillosis. Medical Mycology, 2010, 48, 1-9.	0.7	17
193	Monotherapy with caspofungin for candidaemia in adult patients with cancer: a retrospective, single institution study. International Journal of Antimicrobial Agents, 2009, 34, 95-98.	2.5	16
194	Comparative in vivo dose-dependent activity of caspofungin and anidulafungin against echinocandin-susceptible and -resistant Aspergillus fumigatus. Journal of Antimicrobial Chemotherapy, 2011, 66, 1324-1331.	3.0	16
195	Mouse models for the study of fungal pneumonia. Virulence, 2012, 3, 329-338.	4.4	16
196	Hyperthermia Sensitizes Rhizopus oryzae to Posaconazole and Itraconazole Action through Apoptosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 4360-4368.	3.2	16
197	Macrophage Reporter Cell Assay for Screening Immunopharmacological Activity of Cell Wall-Active Antifungals. Antimicrobial Agents and Chemotherapy, 2014, 58, 1738-1743.	3.2	16
198	Radiologic findings of Fusarium pneumonia in neutropenic patients. Mycoses, 2017, 60, 73-78.	4.0	16

#	Article	IF	CITATIONS
199	Candida Lusitaniae Catheter-Related Sepsis. Annals of Pharmacotherapy, 2001, 35, 1570-1574.	1.9	15
200	Does pre-exposure of Aspergillus fumigatus to voriconazole or posaconazole in vitro affect its virulence and the in vivo activity of subsequent posaconazole or voriconazole, respectively? A study in a fly model of aspergillosis. Journal of Antimicrobial Chemotherapy, 2008, 62, 539-542.	3.0	15
201	Increased bacterial adherence and biomass in Pseudomonas aeruginosa bacteria exposed to clarithromycin. Diagnostic Microbiology and Infectious Disease, 2009, 63, 81-86.	1.8	15
202	How Long Do We Need to Treat an Invasive Mold Disease in Hematology Patients? Factors Influencing Duration of Therapy and Future Questions. Clinical Infectious Diseases, 2020, 71, 685-692.	5.8	15
203	The impact of prior invasive mold infections in leukemia patients who undergo allo-SCT in the era of triazole-based secondary prophylaxis. Bone Marrow Transplantation, 2013, 48, 141-143.	2.4	14
204	Animal Models for Studying Triazole Resistance in Aspergillus fumigatus. Journal of Infectious Diseases, 2017, 216, S466-S473.	4.0	14
205	Comparison of oral immediate-release (IR) and extended-release (ER) metronidazole bactericidal activity against Bacteroides spp. using an in vitro model of infection. Diagnostic Microbiology and Infectious Disease, 2000, 37, 51-55.	1.8	13
206	Progressive Disseminated Aspergillosis in a Bone Marrow Transplant Recipient: Response with a High-Dose Lipid Formulation of Amphotericin B. Clinical Infectious Diseases, 2001, 32, e94-e96.	5.8	13
207	Development of a Ligand-Directed Approach To Study the Pathogenesis of Invasive Aspergillosis. Infection and Immunity, 2005, 73, 7747-7758.	2.2	13
208	Caspofungin versus Liposomal Amphotericin B for Empirical Therapy. New England Journal of Medicine, 2005, 352, 410-414.	27.0	13
209	Multidrug-resistant endosymbiotic bacteria account for the emergence of zygomycosis: A hypothesis. Fungal Genetics and Biology, 2007, 44, 88-92.	2.1	13
210	Different Recommendations for Daptomycin Dosing Over Time in Patients With Severe Infections. Clinical Infectious Diseases, 2014, 58, 1788-1789.	5.8	13
211	Preexposure to Isavuconazole Increases the Virulence of <i>Mucorales</i> but Not <i>Aspergillus fumigatus</i> in a <i>Drosophila melanogaster</i> Infection Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	13
212	Liver transplantation is associated with good clinical outcome in patients with active tuberculosis and acute liver failure due to antiâ€ŧubercular treatment. Transplant Infectious Disease, 2017, 19, e12658.	1.7	12
213	The utility of contrast-enhanced hypodense sign for the diagnosis of pulmonary invasive mould disease in patients with haematological malignancies. British Journal of Radiology, 2018, 91, 20170220.	2.2	12
214	Successful treatment of bilateral endogenous <i>>Fusarium solani</i> >endophthalmitis in a patient with acute lymphocytic leukaemia. Mycoses, 2018, 61, 53-60.	4.0	12
215	Potential role of T2Candida in the management of empirical antifungal treatment in patients at high risk of candidaemia: a pilot single-centre study. Journal of Antimicrobial Chemotherapy, 2018, 73, 2856-2859.	3.0	12
216	Decision Making in Antifungal Monotherapy versus Combination Therapy. Pharmacotherapy, 2006, 26, 61S-67S.	2.6	11

#	Article	IF	CITATIONS
217	Genomewide Screening for Genes Associated with Gliotoxin Resistance and Sensitivity in <i>Saccharomyces cerevisiae</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1325-1329.	3.2	11
218	Culture Medium Composition Affects the Lethality of <i>Cunninghamella bertholletiae</i> in a Fly Model of Mucormycosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 4569-4569.	3.2	11
219	Lack of galactomannan reactivity in dematiaceous molds recovered from cancer patients with phaeohyphomycosis. Diagnostic Microbiology and Infectious Disease, 2010, 66, 200-203.	1.8	11
220	Efficacy of Caspofungin in Neutropenic and Corticosteroid-Immunosuppressed Murine Models of Invasive Pulmonary Mucormycosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3584-3587.	3.2	11
221	Anidulafungin versus Caspofungin in a Mouse Model of Candidiasis Caused by Anidulafungin-Susceptible Candida parapsilosis Isolates with Different Degrees of Caspofungin Susceptibility. Antimicrobial Agents and Chemotherapy, 2014, 58, 229-236.	3.2	11
222	Agents of Mucormycosis and Entomophthoramycosis. , 2015, , 2909-2919.e3.		11
223	Innate Inflammatory Response and Immunopharmacologic Activity of Micafungin, Caspofungin, and Voriconazole against Wild-Type and <i>FKS</i> Mutant Candida glabrata Isolates. Antimicrobial Agents and Chemotherapy, 2015, 59, 5405-5412.	3.2	11
224	Chimeric Antigen Receptor T-cell Immunotherapy and Need for Prophylaxis for Invasive Mold Infections. Clinical Infectious Diseases, 2020, 71, 1802-1803.	5.8	11
225	Critically ill patients with COVID-19 show lung fungal dysbiosis with reduced microbial diversity in patients colonized with Candida spp International Journal of Infectious Diseases, 2022, 117, 233-240.	3.3	11
226	Pentamidine Is Active in a Neutropenic Murine Model of Acute Invasive Pulmonary Fusariosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 294-297.	3.2	10
227	Posaconazole Prophylaxis in Hematologic Cancer. New England Journal of Medicine, 2007, 356, 2214-2218.	27.0	10
228	Pharmacokinetic–pharmacodynamic optimization of triazole antifungal therapy. Current Opinion in Infectious Diseases, 2011, 24, S14-S29.	3.1	10
229	Febrile events in acute lymphoblastic leukemia: a prospective observational multicentric SEIFEM study (SEIFEM-2012/B ALL). Annals of Hematology, 2018, 97, 791-798.	1.8	10
230	Interactions of Liposome Carriers with Infectious Fungal Hyphae Reveals the Role of β-Glucans. Molecular Pharmaceutics, 2012, 9, 2489-2496.	4.6	9
231	Drosophila melanogaster as a model to explore the effects of methicillin-resistant Staphylococcus aureus strain type on virulence and response to linezolid treatment. Microbial Pathogenesis, 2013, 55, 16-20.	2.9	9
232	High-dose induction liposomal amphotericin B followed by de-escalation is effective in experimental Aspergillus terreus pneumonia. Journal of Antimicrobial Chemotherapy, 2013, 68, 1148-1151.	3.0	9
233	Effect of Preexposure to Triazoles on Susceptibility and Virulence of Rhizopus oryzae. Antimicrobial Agents and Chemotherapy, 2015, 59, 7830-7832.	3.2	9
234	Implementation of a Meningitis Care Bundle in the Emergency Room Reduces Mortality Associated With Acute Bacterial Meningitis. Annals of Pharmacotherapy, 2015, 49, 978-985.	1.9	9

#	Article	IF	CITATIONS
235	<i>In vitro</i> interactions among echinocandins against <i>Aspergillus fumigatus</i> : lack of concordance among methods. Medical Mycology, 2011, 49, 285-288.	0.7	8
236	Importance of Pharmacokinetic Considerations for Selecting Therapy in the Treatment of Invasive Fungal Infections. American Journal of Therapeutics, 2012, 19, 51-63.	0.9	8
237	Using State Transition Models To Explore How the Prevalence of Subtherapeutic Posaconazole Exposures Impacts the Clinical Utility of Therapeutic Drug Monitoring for Posaconazole Tablets and Oral Suspension. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	8
238	Pharmacotherapy of Candida bloodstream infections: new treatment options, new era. Expert Opinion on Pharmacotherapy, 2002, 3, 1039-1057.	1.8	7
239	Carbapenem-resistant <i>Klebsiella pneumoniae</i> colonization at liver transplantation: A management challenge. Liver Transplantation, 2014, 20, 631-633.	2.4	7
240	Transcriptional profiles of pulmonary innate immune responses to isogenic antibioticâ€susceptible and multidrugâ€resistant <i>Pseudomonas aeruginosa</i> . Microbiology and Immunology, 2018, 62, 291-294.	1.4	7
241	Development and Applications of Prognostic Risk Models in the Management of Invasive Mold Disease. Journal of Fungi (Basel, Switzerland), 2018, 4, 141.	3.5	7
242	Comparative in vitro pharmacodynamic analysis of isavuconazole, voriconazole, and posaconazole against clinical isolates of aspergillosis, mucormycosis, fusariosis, and phaeohyphomycosis. Diagnostic Microbiology and Infectious Disease, 2019, 95, 114861.	1.8	7
243	Comparative serum bactericidal activity of meropenem-based combination regimens against extended-spectrum beta-lactamase and KPC-producing Klebsiella pneumoniae. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1925-1931.	2.9	7
244	Prognostic Role of Bacterial and Fungal Infections in Patients With Liver Cirrhosis With and Without Acute-on-Chronic Liver Failure: A Prospective 2-Center Study. Open Forum Infectious Diseases, 2020, 7, ofaa453.	0.9	7
245	Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions. Current Opinion in Infectious Diseases, 2021, 34, 288-296.	3.1	7
246	Clinical consequences of very major errors with semi-automated testing systems for antimicrobial susceptibility of carbapenem-resistant Enterobacterales. Clinical Microbiology and Infection, 2022, 28, 1290.e1-1290.e4.	6.0	7
247	<i>Toll</i> -deficient Drosophila are resistant to infection by Pneumocystis spp.: additional evidence of specificity to mammalian hosts. Virulence, 2010, 1, 523-525.	4.4	6
248	Improved Radiographic Imaging of Invasive Fungal Disease: The Cornerstone to Antifungal Stewardship in the Hematology Units?. Current Fungal Infection Reports, 2016, 10, 78-86.	2.6	6
249	Defining the role of echinocandin catechol functional groups in the development of secondary hepatocellular carcinoma. Journal of Antimicrobial Chemotherapy, 2012, 67, 422-429.	3.0	5
250	Ceftolozane-Tazobactam Treatment of Hypervirulent Multidrug Resistant Pseudomonas aeruginosa Infections in Neutropenic Patients. Microorganisms, 2020, 8, 2055.	3.6	5
251	Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters. Frontiers in Immunology, 2021, 12, 804988.	4.8	5
252	The activity of amphotericin B against Candida albicans is not directly associated with extracellular calcium concentration. Journal of Antimicrobial Chemotherapy, 2003, 51, 305-312.	3.0	4

#	Article	IF	CITATIONS
253	Azoles and antidepressants: a miniâ€review of the tolerability of coâ€administration. Mycoses, 2009, 52, 433-439.	4.0	4
254	Pharmacology of Liposomal Amphotericin B: An Introduction to Preclinical and Clinical Advances for Treatment of Life-threatening Invasive Fungal Infections. Clinical Infectious Diseases, 2019, 68, S241-S243.	5.8	4
255	Early low-dose computed tomography with pulmonary angiography to improve the early diagnosis of invasive mould disease in patients with haematological malignancies: A pilot study. Journal of Infection, 2021, 83, 371-380.	3.3	4
256	Immunomodulating effects of antifungal therapy. Current Fungal Infection Reports, 2009, 3, 243-250.	2.6	3
257	Update on Amphotericin B Pharmacology and Dosing for Common Systemic Mycoses. Current Fungal Infection Reports, 2012, 6, 349-357.	2.6	3
258	Differences in the rate of carbapenem-resistant Enterobacteriaceae colonisation or Clostridium difficile infection following frontline treatment with tigecycline vs. meropenem for intra-abdominal infections. International Journal of Antimicrobial Agents, 2018, 51, 516-521.	2.5	3
259	The role of extended infusion β-lactams in the treatment of bloodstream infections in patients with liver cirrhosis. Expert Review of Anti-Infective Therapy, 2018, 16, 771-779.	4.4	3
260	Beyond biomarkers: How enhanced CT imaging can improve the diagnostic-driven management of invasive mould disease. Medical Mycology, 2019, 57, S274-S286.	0.7	3
261	Risk factors for treatment failure in patients receiving β-lactam/β-lactamase inhibitor combinations for Enterobacteriaceae bloodstream infection: A retrospective, single-centre, cohort study. International Journal of Antimicrobial Agents, 2019, 53, 574-581.	2.5	3
262	The timing of plerixafor addition to G-Csf and chemotherapy affects immunological recovery after autologous stem cell transplant in multiple myeloma. Bone Marrow Transplantation, 2020, 55, 946-954.	2.4	3
263	Judgments of Value, Judgments of Fact: The Ethical Dimension of Biohistorical Research. Public Historian, 2006, 28, 93-99.	0.0	2
264	Cutaneous Mucormycosis in Tornado Survivors. Current Fungal Infection Reports, 2011, 5, 187-189.	2.6	2
265	Immunomodulatory Agents as Adjunctive Therapy for the Treatment of Resistant Candida Species. Current Fungal Infection Reports, 2013, 7, 119-125.	2.6	2
266	Aggressive versus conservative initiation of antibiotics. Lancet Infectious Diseases, The, 2013, 13, 387.	9.1	2
267	Serum Galactomannan Diagnosis of Breakthrough Invasive Fungal Disease. Clinical Infectious Diseases, 2015, 60, 1284-1284.	5.8	2
268	Computerized tomographic pulmonary angiography discriminates invasive mould disease of the lung from lymphoma. British Journal of Haematology, 2015, 169, 462-462.	2.5	2
269	Posaconazole prophylaxis in hematologic cancer. New England Journal of Medicine, 2007, 356, 2214-5; author reply 2215-8.	27.0	2
270	Challenges in Designing Animal Studies To Detect Antagonism of Polyene Activity. Antimicrobial Agents and Chemotherapy, 2004, 48, 3211-3212.	3.2	1

#	Article	IF	CITATIONS
271	Antifungal Agents. , 2015, , 79-97.		1
272	Using carbapenems for carbapenem-resistant <i>Klebsiella pneumoniae</i> -Are we flogging a dead (work)horse antibiotic?. Virulence, 2017, 8, 13-14.	4.4	1
273	Combination antifungal therapy for breakthrough invasive mould disease in patients with haematological malignancies: when management reasoning eclipses evidence-based medicine. Journal of Antimicrobial Chemotherapy, 2020, 75, 3096-3098.	3.0	1
274	Reply to Day et al. Journal of Infectious Diseases, 2021, 224, 1627-1628.	4.0	1
275	The Impact of Antifungal Drug Resistance in the Clinic. , 0, , 373-385.		1
276	Antifungal Drug Interactions. , 0, , 445-456.		1
277	Pharmacokinetic considerations for the use of newer antifungal agents. Current Fungal Infection Reports, 2008, 2, 5-11.	2.6	Ο
278	Reply to "Risk for Invasive Fungal Infections during Acute Myeloid Leukemia Induction Therapy: a True Association with Echinocandins?â€: Antimicrobial Agents and Chemotherapy, 2014, 58, 4990-4991.	3.2	0
279	Preface. Journal of Antimicrobial Chemotherapy, 2016, 71, ii1-ii1.	3.0	Ο
280	Clinical Approach to Infections in the Compromised Host. , 2018, , 1447-1461.		0
281	Infectious disease consultation for candidaemia. Lancet Infectious Diseases, The, 2020, 20, 164.	9.1	Ο
282	Polyene Antifungal Agents. , 2009, , 281-305.		0
283	Fungal Drug Resistance and Pharmacologic Considerations of Dosing Newer Antifungal Therapies. , 2011, , 317-329.		Ο