
## Theophile ohlmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354129/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Selenium, Selenoproteins and Viral Infection. Nutrients, 2019, 11, 2101.                                                                                                                                                          | 4.1  | 294       |
| 2  | Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nature Genetics, 2007, 39, 661-665.                                                                                           | 21.4 | 248       |
| 3  | DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO<br>Journal, 2012, 31, 3745-3756.                                                                                                       | 7.8  | 228       |
| 4  | Evidence for rRNA 2′-O-methylation plasticity: Control of intrinsic translational capabilities of human<br>ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>12934-12939. | 7.1  | 197       |
| 5  | Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications, 2019, 10, 45.                                                                        | 12.8 | 195       |
| 6  | Conducting the initiation of protein synthesis: the role of eIF4G. Biology of the Cell, 2003, 95, 141-156.                                                                                                                        | 2.0  | 191       |
| 7  | The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E EMBO Journal, 1996, 15, 1371-1382.                                  | 7.8  | 190       |
| 8  | The Leader of Human Immunodeficiency Virus Type 1 Genomic RNA Harbors an Internal Ribosome Entry<br>Segment That Is Active during the G 2 /M Phase of the Cell Cycle. Journal of Virology, 2003, 77,<br>3939-3949.                | 3.4  | 178       |
| 9  | Structural and functional diversity of viral IRESes. Biochimica Et Biophysica Acta - Gene Regulatory<br>Mechanisms, 2009, 1789, 542-557.                                                                                          | 1.9  | 152       |
| 10 | A Reevaluation of the Cap-binding Protein, eIF4E, as a Rate-limiting Factor for Initiation of Translation in Reticulocyte Lysate. Journal of Biological Chemistry, 1996, 271, 8983-8990.                                          | 3.4  | 138       |
| 11 | The role of the DEADâ€box RNA helicase DDX3 in mRNA metabolism. Wiley Interdisciplinary Reviews RNA,<br>2013, 4, 369-385.                                                                                                         | 6.4  | 118       |
| 12 | Translational control of retroviruses. Nature Reviews Microbiology, 2007, 5, 128-140.                                                                                                                                             | 28.6 | 115       |
| 13 | HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nature<br>Structural and Molecular Biology, 2005, 12, 1001-1007.                                                                      | 8.2  | 100       |
| 14 | The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote<br>compartmentalized translation initiation of the HIV-1 genomic RNA. Nucleic Acids Research, 2013, 41,<br>6286-6299.                         | 14.5 | 98        |
| 15 | An Internal Ribosome Entry Segment Promotes Translation of the Simian Immunodeficiency Virus<br>Genomic RNA. Journal of Biological Chemistry, 2000, 275, 11899-11906.                                                             | 3.4  | 73        |
| 16 | In Vitro Cleavage of eIF4GI but not eIF4GII by HIV-1 Protease and its Effects on Translation in the Rabbit<br>Reticulocyte Lysate System. Journal of Molecular Biology, 2002, 318, 9-20.                                          | 4.2  | 70        |
| 17 | Characterization of a novel RNA-binding region of elF4Gl critical for ribosomal scanning. EMBO<br>Journal, 2003, 22, 1909-1921.                                                                                                   | 7.8  | 64        |
| 18 | Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate<br>cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Research,<br>2007, 35, e121-e121.   | 14.5 | 60        |

THEOPHILE OHLMANN

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein<br>(PHAS-I; 4E-BP1) in the reticulocyte lysate. EMBO Journal, 1997, 16, 844-855.                                                | 7.8  | 56        |
| 20 | A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA.<br>Nucleic Acids Research, 2010, 38, 1367-1381.                                                                                   | 14.5 | 56        |
| 21 | miRNA repression of translation inÂvitro takes place during 43S ribosomal scanning. Nucleic Acids<br>Research, 2013, 41, 586-598.                                                                                                       | 14.5 | 53        |
| 22 | The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathogens, 2019, 15, e1008093.                                                        | 4.7  | 50        |
| 23 | The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning<br>Mechanism. Journal of Virology, 2012, 86, 2176-2187.                                                                                     | 3.4  | 48        |
| 24 | Lentiviral RNAs can use different mechanisms for translation initiation. Biochemical Society Transactions, 2008, 36, 690-693.                                                                                                           | 3.4  | 47        |
| 25 | mTOR inactivation in myocardium from infant mice rapidly leads to dilated cardiomyopathy due to translation defects and p53/JNK-mediated apoptosis. Journal of Molecular and Cellular Cardiology, 2016, 97, 213-225.                    | 1.9  | 43        |
| 26 | DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1<br>unspliced mRNA through its N-terminal domain. Biochimica Et Biophysica Acta - Gene Regulatory<br>Mechanisms, 2016, 1859, 719-730.     | 1.9  | 43        |
| 27 | Translational control of coronaviruses. Nucleic Acids Research, 2020, 48, 12502-12522.                                                                                                                                                  | 14.5 | 43        |
| 28 | Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein. Retrovirology, 2009, 6, 74.                                                                                                                               | 2.0  | 40        |
| 29 | Translation regulation of mammalian selenoproteins. Biochimica Et Biophysica Acta - General Subjects,<br>2018, 1862, 2480-2492.                                                                                                         | 2.4  | 39        |
| 30 | Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids<br>Research, 2012, 40, 2653-2667.                                                                                                      | 14.5 | 38        |
| 31 | The properties of chimeric picornavirus IRESes show that discrimination between internal translation<br>initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. Rna,<br>1999, 5, 764-778. | 3.5  | 35        |
| 32 | Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T<br>Cells. Journal of Virology, 2015, 89, 8162-8181.                                                                                | 3.4  | 34        |
| 33 | <i>In vitro</i> studies reveal that different modes of initiation on HIVâ€1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS Journal, 2012, 279, 3098-3111.                                          | 4.7  | 30        |
| 34 | Activation of a microRNA response in trans reveals a new role for poly(A) in translational repression.<br>Nucleic Acids Research, 2011, 39, 5215-5231.                                                                                  | 14.5 | 29        |
| 35 | Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs. Virus Research, 2013, 171, 366-381.                                                                                                       | 2.2  | 29        |
| 36 | Translation of intronless RNAs is strongly stimulated by the Epstein–Barr virus mRNA export factor<br>EB2. Nucleic Acids Research, 2009, 37, 4932-4943.                                                                                 | 14.5 | 28        |

THEOPHILE OHLMANN

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Research, 2017, 45, 7382-7400.                                                                        | 14.5 | 28        |
| 38 | Focus on Translation Initiation of the HIV-1 mRNAs. International Journal of Molecular Sciences, 2019, 20, 101.                                                                                                           | 4.1  | 28        |
| 39 | BRCA1 Interacts with Poly(A)-binding Protein. Journal of Biological Chemistry, 2006, 281, 24236-24246.                                                                                                                    | 3.4  | 26        |
| 40 | The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs. Journal of Molecular Biology, 2017, 429, 3334-3352.                                                    | 4.2  | 24        |
| 41 | Alteration of ribosome function upon 5-fluorouracil treatment favors cancer cell drug-tolerance.<br>Nature Communications, 2022, 13, 173.                                                                                 | 12.8 | 23        |
| 42 | In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein. Rna, 2008, 14, 1443-1455.                   | 3.5  | 22        |
| 43 | <i>InÂvitro</i> translation in a hybrid cell free lysate with exogenous cellular ribosomes. Biochemical<br>Journal, 2015, 467, 387-398.                                                                                   | 3.7  | 22        |
| 44 | A Rev–CBP80–eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids<br>Research, 2018, 46, 11539-11552.                                                                                          | 14.5 | 22        |
| 45 | Characterization of two distinct RNA domains that regulate translation of the Drosophila gypsy retroelement. Rna, 2004, 10, 504-515.                                                                                      | 3.5  | 21        |
| 46 | Translational Control of the HIV Unspliced Genomic RNA. Viruses, 2015, 7, 4326-4351.                                                                                                                                      | 3.3  | 21        |
| 47 | A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus.<br>Journal of Virology, 2008, 82, 3574-3583.                                                                                | 3.4  | 20        |
| 48 | Functional mechanisms of the cellular prion protein (PrPC) associated anti-HIV-1 properties. Cellular and Molecular Life Sciences, 2012, 69, 1331-1352.                                                                   | 5.4  | 20        |
| 49 | Involvement of an Arginine Triplet in M1 Matrix Protein Interaction with Membranes and in M1<br>Recruitment into Virus-Like Particles of the Influenza A(H1N1)pdm09 Virus. PLoS ONE, 2016, 11, e0165421.                  | 2.5  | 20        |
| 50 | INT6 interacts with MIF4GD/SLIP1 and is necessary for efficient histone mRNA translation. Rna, 2012, 18, 1163-1177.                                                                                                       | 3.5  | 18        |
| 51 | A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.<br>ELife, 2021, 10, .                                                                                                   | 6.0  | 18        |
| 52 | Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy<br>Fluxes in Hybrid RRL Systems. ACS Synthetic Biology, 2018, 7, 218-226.                                              | 3.8  | 17        |
| 53 | Translation initiation of the HIV-1 mRNA. Translation, 2014, 2, e960242.                                                                                                                                                  | 2.9  | 16        |
| 54 | The 3′ Untranslated Region of the Andes Hantavirus Small mRNA Functionally Replaces the Poly(A) Tail and Stimulates Cap-Dependent Translation Initiation from the Viral mRNA. Journal of Virology, 2010, 84, 10420-10424. | 3.4  | 15        |

THEOPHILE OHLMANN

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Research, 2014, 42, 12861-12875.                                                                                            | 14.5 | 15        |
| 56 | Epstein-Barr Virus Protein EB2 Stimulates Translation Initiation of mRNAs through Direct Interactions with both Poly(A)-Binding Protein and Eukaryotic Initiation Factor 4G. Journal of Virology, 2018, 92, .                    | 3.4  | 15        |
| 57 | Selenium Metabolism, Regulation, and Sex Differences in Mammals. Molecular and Integrative Toxicology, 2018, , 89-107.                                                                                                           | 0.5  | 13        |
| 58 | microRNAs stimulate translation initiation mediated by HCV-like IRESes. Nucleic Acids Research, 2017, 45, gkw1345.                                                                                                               | 14.5 | 12        |
| 59 | A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using<br>CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA[Ser]Sec Gene. Cells, 2019, 8, 574.                                 | 4.1  | 12        |
| 60 | <i>Ex Vivo</i> and <i>In Vivo</i> Inhibition of Human Rhinovirus Replication by a New Pseudosubstrate of Viral 2A Protease. Journal of Virology, 2012, 86, 691-704.                                                              | 3.4  | 11        |
| 61 | Interplay between Selenium, Selenoproteins and HIV-1 Replication in Human CD4 T-Lymphocytes.<br>International Journal of Molecular Sciences, 2022, 23, 1394.                                                                     | 4.1  | 11        |
| 62 | Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evolutionary Biology, 2015, 15, 129.                                                                       | 3.2  | 9         |
| 63 | InÂvitro translation of mRNAs that are in their native ribonucleoprotein complexes. Biochemical<br>Journal, 2015, 472, 111-119.                                                                                                  | 3.7  | 7         |
| 64 | HIV-1 sequences isolated from patients promote expression of shorter isoforms of the Gag polyprotein. Archives of Virology, 2016, 161, 3495-3507.                                                                                | 2.1  | 7         |
| 65 | Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses, 2022, 14, 1505.                                                        | 3.3  | 7         |
| 66 | Subcellular Localization of ENS-1/ERNI in Chick Embryonic Stem Cells. PLoS ONE, 2014, 9, e92039.                                                                                                                                 | 2.5  | 4         |
| 67 | A Fractionated Reticulocyte Lysate System for Studies on Protein Synthesis Initiation Factors. , 1998, 77, 211-226.                                                                                                              |      | 3         |
| 68 | Effect of cleavage of the p220 subunit of eukaryotic translation initiation factor eIF-4F on protein synthesis in vitro. Biochemical Society Transactions, 1995, 23, 315S-315S.                                                  | 3.4  | 2         |
| 69 | Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is<br>not required for the translational activity of the HCV IRES. Journal of Biological Chemistry, 2020, 295,<br>1843-1856. | 3.4  | 2         |
| 70 | L'initiation de la synthèse des protéines chez les eucaryotes Medecine/Sciences, 2000, 16, 77.                                                                                                                                   | 0.2  | 1         |