
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335377/publications.pdf Version: 2024-02-01

KANII VASIII

#	Article	IF	CITATIONS
1	Growth characteristics of ZnO thin films produced via catalytic reaction-assisted chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 030904.	2.1	7
2	CVD growth of zinc oxide thin films on graphene on insulator using a high-temperature platinum-catalyzed water beam. Journal of Materials Science, 2019, 54, 228-237.	3.7	3
3	Growth of GaN by nitridation of seed/catalyst free electrodeposited Ga-based compound materials on graphene on insulator. Materials Science in Semiconductor Processing, 2017, 67, 98-103.	4.0	1
4	Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction. Thin Solid Films, 2017, 644, 29-32.	1.8	4
5	H2O beams for zinc oxide film growth produced by a Pt-catalyzed H2–O2reaction at various divergent aperture angles of a de Laval nozzle. Japanese Journal of Applied Physics, 2016, 55, 02BC12.	1.5	0
6	Effect of N2O-doped buffer layer on the optical properties of ZnO films grown on glass substrates using high-energy H2O generated by catalytic reaction. Japanese Journal of Applied Physics, 2016, 55, 02BC14.	1.5	1
7	Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field. Physical Review B, 2015, 92, .	3.2	12
8	Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature. Nanoscale Research Letters, 2015, 10, 943.	5.7	13
9	Effects of N2O gas addition on the properties of ZnO films grown by catalytic reaction-assisted chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	2
10	High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Research Letters, 2015, 10, 7.	5.7	57
11	Seed/catalyst-free growth of zinc oxide on graphene by thermal evaporation: effects of substrate inclination angles and graphene thicknesses. Nanoscale Research Letters, 2015, 10, 10.	5.7	16
12	Growth of High-Density Vertically Aligned Zinc Oxide Nanorods on Non-Oriented Seed on Insulator by Hydrothermal Process: Effects of Molarity and Temperature. Nanoscience and Nanotechnology Letters, 2015, 7, 834-839.	0.4	1
13	Hydrochloric acid modification process for fabricating Bi ₂ Sr ₂ CaCu ₂ O ₈₊ _x THz oscillator stack on-chip coupled to THz detector. Japanese Journal of Applied Physics, 2014, 53, 04EJ02.	1.5	7
14	Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate. Nanoscale Research Letters, 2014, 9, 685.	5.7	9
15	Electromagnetically induced transparency like transmission in a metamaterial composed of cut-wire pairs with indirect coupling. Physical Review B, 2014, 89, .	3.2	29
16	Electrochemically deposited gallium oxide nanostructures on silicon substrates. Nanoscale Research Letters, 2014, 9, 120.	5.7	18
17	Effects of N2O addition on the properties of ZnO thin films grown using high-temperature H2O generated by catalytic reaction. Materials Research Society Symposia Proceedings, 2014, 1633, 61-67.	0.1	2
18	Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation. Nanoscale Research Letters, 2014, 9, 83.	5.7	21

#	Article	IF	CITATIONS
19	Properties of zinc oxide films grown on sapphire substrates using high-temperature H2O generated by a catalytic reaction on platinum nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021502.	2.1	2
20	Effects of sputtered buffer layer on the characteristics of ZnO:Al films grown on glass substrates using high-temperature H2O generated by a catalytic reaction. Japanese Journal of Applied Physics, 2014, 53, 02BC02.	1.5	3
21	A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial. Applied Physics Letters, 2014, 105, .	3.3	50
22	Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition. Nanoscale Research Letters, 2014, 9, 337.	5.7	23
23	Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Research Letters, 2014, 9, 95.	5.7	29
24	Electrical properties of zinc oxide thin films deposited using high-energy H2O generated from a catalytic reaction on platinum nanoparticles. Materials Research Society Symposia Proceedings, 2013, 1494, 127-132.	0.1	0
25	Inference on the Production Mechanism of ZnO Thin Films from Activated Water and Dimethylzinc Molecules. Japanese Journal of Applied Physics, 2013, 52, 096701.	1.5	0
26	Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation. Materials, 2012, 5, 2817-2832.	2.9	58
27	Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures. Materials, 2012, 5, 2270-2279.	2.9	9
28	Improved characteristics of mesa-type intrinsic Josephson junctions by vacuum cleavage process for Bi2Sr2CaCu2O8+Î/Au contacts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 031101.	2.1	1
29	Fabrication process of intrinsic Josephson junction stacks in Bi2Sr2CaCu2O8+x crystals by double-sided patterning process using dilute hydrochloric acid. Cryogenics, 2012, 52, 398-402.	1.7	8
30	ZnO films grown on glass substrates using high-energy precursors generated by a catalytic reaction. IOP Conference Series: Materials Science and Engineering, 2011, 21, 012007.	0.6	0
31	Catalytic decomposition of NH3 on heated Ru and W surfaces. Thin Solid Films, 2011, 519, 4429-4431.	1.8	4
32	Deposition of Zinc Oxide Thin Films Using a Surface Reaction on Platinum Nanoparticles. Materials Research Society Symposia Proceedings, 2011, 1315, 1.	0.1	8
33	Fabrication of high-electron-mobility ZnO epilayers by chemical vapor deposition using catalytically produced excited water. Journal of Crystal Growth, 2010, 312, 483-486.	1.5	3
34	Low temperature epitaxial growth of widegap semiconductors using reactive radicals and high-energy precursors generated by catalytic reactions. , 2010, , .		0
35	Growth of GaN on SiC/Si substrates using AlN buffer layer under low III/V source gas ratio by hot-mesh CVD. , 2010, , .		3
36	Heteroepitaxial growth of SiC at low temperatures for the application of a pressure sensor using hot-mesh CVD. , 2010, , .		0

#	Article	IF	CITATIONS
37	Raman-Scattering Spectroscopy of Epitaxial Graphene Formed on SiC Film on Si Substrate. E-Journal of Surface Science and Nanotechnology, 2009, 7, 107-109.	0.4	63
38	Effects of Silicon Source Gas and Substrate Bias on the Film Properties of Si-Incorporated Diamond-Like Carbon by Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2009, 48, 116002.	1.5	10
39	Characteristics of Ge Nanodots Embedded in SiC Layer Fabricated on Si(001). Japanese Journal of Applied Physics, 2009, 48, 08JB06.	1.5	0
40	Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2009, 48, 076509.	1.5	1
41	The growth of GaN films by alternate source gas supply hot-mesh CVD method. Thin Solid Films, 2009, 517, 3528-3531.	1.8	1
42	Hydrogen Plasma Annealing of ZnO Films Deposited by Magnetron Sputtering with Third Electrode. IEICE Transactions on Electronics, 2009, E92-C, 1438-1442.	0.6	0
43	Improvement of the uniformity in electronic properties of AZO films using an rf magnetron sputtering with a mesh grid electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 26-29.	3.5	12
44	SiCOI structure fabricated by catalytic chemical vapor deposition. Thin Solid Films, 2008, 516, 644-647.	1.8	14
45	Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD. Thin Solid Films, 2008, 516, 659-662.	1.8	24
46	Evaluation of hydrogen atom density generated on a tungsten mesh surface. Thin Solid Films, 2008, 516, 503-505.	1.8	4
47	"Temperature oscillation―as a real-time monitoring of the growth of 3C–SiC on Si substrate. Applied Surface Science, 2008, 254, 6235-6237.	6.1	3
48	Growth of GaN Films by Hot-Mesh Chemical Vapor Deposition Using Ruthenium-Coated Tungsten Mesh. Japanese Journal of Applied Physics, 2008, 47, 573-576.	1.5	3
49	Surface Structure with High-Density Nanodots Formed by Pulse Nucleation Method Using Monomethylgermane. Japanese Journal of Applied Physics, 2008, 47, 5636-5638.	1.5	1
50	Surface Structure Formed by the Reaction of Monomethylgermane on Si(001) Surface. Japanese Journal of Applied Physics, 2008, 47, 1690-1693.	1.5	3
51	Thin-Film Deposition of Silicon-Incorporated Diamond-Like Carbon by Plasma-Enhanced Chemical Vapor Deposition Using Monomethylsilane as a Silicon Source. Japanese Journal of Applied Physics, 2008, 47, 8491-8497.	1.5	19
52	Epitaxial Growth of SiC on Silicon on Insulator Substrates with Ultrathin Top Si Layer by Hot-Mesh Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47, 569-572.	1.5	6
53	Hydrogen-Controlled Crystallinity of 3C-SiC Film on Si(001) Grown with Monomethylsilane. Japanese Journal of Applied Physics, 2007, 46, L40-L42.	1.5	13
54	Interpretation of initial stage of 3C-SiC growth on Si(100) using dimethylsilane. Applied Surface Science, 2006, 252, 3460-3465.	6.1	6

#	Article	IF	CITATIONS
55	SiCOI Structure Fabricated by Hot-Mesh Chemical Vapor Deposition. Advanced Materials Research, 2006, 11-12, 257-260.	0.3	0
56	Epitaxial Growth of Hexagonal GaN Films on SiC/Si Substrates by Hot-Mesh CVD Method. Advanced Materials Research, 2006, 11-12, 261-264.	0.3	2
57	Characteristics of SiC Heteroepitaxial Growth on Si by Hot-Mesh Chemical Vapor Deposition. Advanced Materials Research, 2006, 11-12, 265-268.	0.3	0
58	Low Temperature Heteroepitaxial Growth of 3C-SiC on Si Substrates by Rapid Thermal Triode Plasma CVD using Dimethylsilane. , 2006, , .		0
59	Low-Temperature Heteroepitaxial Growth of 3C-SiC(111) on Si(110) Substrate Using Monomethylsilane. ECS Transactions, 2006, 3, 449-455.	0.5	14
60	Improvement in Crystallinity of ZnO Films Prepared by rf Magnetron Sputtering with Grid Electrode. Japanese Journal of Applied Physics, 2005, 44, 684-687.	1.5	19
61	Low-Temperature Heteroepitaxial Growth of SiC on (100) Si Using Hot-Mesh Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005, 44, 1361-1364.	1.5	38
62	Evaluation of the Correspondence between Carbon Incorporation and the Development of c(4×4) Domains. Japanese Journal of Applied Physics, 2005, 44, 1915-1918.	1.5	0
63	(100)-Oriented 3C-SiC Polycrystalline Film Grown on SiO2by Hot-Mesh Chemical Vapor Deposition Using Monomethylsilane and Hydrogen. Japanese Journal of Applied Physics, 2005, 44, L809-L811.	1.5	4
64	Hot-mesh Chemical Vapor Deposition for 3C-SiC Growth on Si and SiO2. Materials Research Society Symposia Proceedings, 2005, 862, 8111.	0.1	0
65	The characterization of an Si(001)-c(4 × 4) structure formed using monomethylsilane. Nanotechnology, 2004, 15, S406-S409.	2.6	5
66	Hot-mesh CVD for growth of GaN films on (100) GaAs. Thin Solid Films, 2004, 464-465, 116-119.	1.8	11
67	Si c(4×4) structure appeared in the initial stage of 3C-SiC epitaxial growth on Si(0 0 1) using monomethylsilane and dimethylsilane. Applied Surface Science, 2003, 212-213, 730-734.	6.1	20
68	Generation of ammonia plasma using a helical antenna and nitridation of GaAs surface. Applied Surface Science, 2003, 212-213, 619-624.	6.1	16
69	Initial stage of 3C–SiC growth on Si(0 0 1)–2 × 1 surface using monomethylsilane. Applied Surface Science, 2003, 216, 575-579.	6.1	21
70	Radio frequency power dependence of the characteristics of 3C-SiC on Si grown by triode plasma CVD using dimethylsilane. Applied Surface Science, 2003, 216, 580-584.	6.1	2
71	Growth of GaN films on nitrided GaAs substrates using hot-wire CVD. Thin Solid Films, 2003, 430, 174-177.	1.8	7
72	Growth of c-GaN films on GaAs(100) using hot-wire CVD. Thin Solid Films, 2003, 430, 178-181.	1.8	4

#	Article	IF	CITATIONS
73	STM Observation of the Surface Structures Formed on the Initial Stage of SiC Growth Using Monomethylsilane. Hyomen Kagaku, 2003, 24, 474-479.	0.0	0
74	Comparison of the Growth Characteristics of SiC on Si between Low-Pressure CVD and Triode Plasma CVD. Materials Science Forum, 2002, 389-393, 367-370.	0.3	6
75	In situ observation of reflection high-energy electron diffraction during the initial growth of SiC on Si using dimethylsilane. Journal of Crystal Growth, 2002, 237-239, 1254-1259.	1.5	9
76	Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane. Applied Surface Science, 2001, 175-176, 495-498.	6.1	38
77	Characterization of the surface layer of GaAs nitrided by high-density plasma. Applied Surface Science, 2001, 175-176, 585-590.	6.1	2
78	Effect of thinning a WSiN/WSi[sub x] barrier layer on its barrier capability. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 788.	1.6	4
79	Initial Stage of SiC Growth on Si Surface Using Dimethylsilane Hyomen Kagaku, 2001, 22, 566-572.	0.0	1
80	Epitaxial growth of 3C-SiC films on Si substrates by triode plasma CVD using dimethylsilane. Applied Surface Science, 2000, 159-160, 556-560.	6.1	21
81	Epitaxial growth of AlN films on Si substrates by ECR plasma assisted MOCVD under controlled plasma conditions in afterglow region. Applied Surface Science, 2000, 159-160, 462-467.	6.1	7
82	Extensive Control of Plasma Parameters in the Afterglow Region of Electron-Cyclotron-Resonance Plasma for the Epitaxial Growth of Cubic Gallium Nitride. Japanese Journal of Applied Physics, 1999, 38, 4329-4332.	1.5	2
83	Growth of crystalline SiC films by triode plasma CVD using an organosilicon compound. Electronics and Communications in Japan, 1999, 82, 55-61.	0.2	0
84	Improvement in the stability of amorphous SiNâ^'BN films prepared by hybrid-plasma-enhanced chemical vapour deposition. Thin Solid Films, 1996, 281-282, 305-307.	1.8	3
85	Câ€V Characteristics of Amorphous Silicon Nitride Films Prepared by Hydrogen Radicalâ€Assisted Plasma Chemical Vapor Deposition. Journal of the Electrochemical Society, 1994, 141, 742-746.	2.9	1
86	Structure of Microcrystalline Silicon Carbide Films Prepared by Hydrogen-Radical-Enhanced Chemical Vapor Deposition in Magnetic Field. Japanese Journal of Applied Physics, 1994, 33, 4395-4399.	1.5	8
87	Silicon nitride films grown by hydrogen radical enhanced chemical vapor deposition utilizing trisdimethylaminosilane. Journal of Non-Crystalline Solids, 1994, 169, 301-305.	3.1	2
88	Supply of hydrogen radicals generated by microwave plasma to the SiN film growing surface during RF plasma enhanced chemical vapor deposition. Applied Surface Science, 1993, 65-66, 265-270.	6.1	1
89	Preparation of Microcrystalline Silicon Carbide Films by Hydrogen-Radical-Enhanced Chemical Vapor Deposition Using Tetramethylsilane. Japanese Journal of Applied Physics, 1992, 31, L379-L382.	1.5	18
90	Growth of low stress SiN films containing carbon by magnetron plasma enhanced chemical vapor deposition. Journal of Non-Crystalline Solids, 1991, 127, 1-7.	3.1	5

#	Article	IF	CITATIONS
91	Low hydrogen content silicon nitride films grown by chemical vapor deposition using microwave excited hydrogen radicals. Journal of Electronic Materials, 1991, 20, 529-533.	2.2	5
92	Hydrogen-Radical-Assisted Chemical Vapor Deposition of SiN Films Using Si(CH3)4and NH2CH3. Japanese Journal of Applied Physics, 1990, 29, 2822-2823.	1.5	5
93	Chemical Vapor Deposition of Low Hydrogen Content Silicon Nitride Films Using Microwave-Excited Hydrogen Radicals. Japanese Journal of Applied Physics, 1990, 29, 918-922.	1.5	24
94	Amorphous SiN films grown by hotâ€filament chemical vapor deposition using monomethylamine. Applied Physics Letters, 1990, 56, 898-900.	3.3	21
95	Growth of Amorphous SiN Films by Chemical Vapor Deposition Using Monomethylamine. Japanese Journal of Applied Physics, 1989, 28, 1527-1528.	1.5	8
96	The influence of carbon addition on the internal stress and chemical inertness of amorphous silicon-nitride films. Journal of Non-Crystalline Solids, 1989, 111, 173-177.	3.1	2
97	Influence of carbon addition on the properties of a-SiN films Shinku/Journal of the Vacuum Society of Japan, 1988, 31, 174-178.	0.2	0