
Baldeep Sidhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3353097/publications.pdf Version: 2024-02-01

RAINEED SINHII

#	Article	lF	CITATIONS
1	The effect of scar and pacing location on repolarization in a porcine myocardial infarction model. Heart Rhythm O2, 2022, 3, 186-195.	1.7	0
2	Multi-lead pacing for cardiac resynchronization therapy in heart failure: a meta-analysis of randomized controlled trials. European Heart Journal Open, 2022, 2, .	2.3	2
3	Leadless left ventricular endocardial pacing for cardiac resynchronization therapy: A systematic review and meta-analysis. Heart Rhythm, 2022, 19, 1176-1183.	0.7	13
4	A multimodal deep learning model for cardiac resynchronisation therapy response prediction. Medical Image Analysis, 2022, 79, 102465.	11.6	8
5	Machine learning–derived major adverse event prediction of patients undergoing transvenous lead extraction: Using the ESC EHRA EORP European lead extraction ConTRolled ELECTRa registry. Heart Rhythm, 2022, 19, 885-893.	0.7	5
6	Building Models of Patient-Specific Anatomy and Scar Morphology from Clinical MRI Data. , 2021, , 453-461.		0
7	Leadless left ventricular endocardial pacing for CRT upgrades in previously failed and high-risk patients in comparison with coronary sinus CRT upgrades. Europace, 2021, 23, 1577-1585.	1.7	13
8	Risk stratification of patients undergoing transvenous lead extraction with the ELECTRa Registry Outcome Score (EROS): an ESC EHRA EORP European lead extraction ConTRolled ELECTRa registry analysis. Europace, 2021, 23, 1462-1471.	1.7	38
9	Feasibility of intraprocedural integration of cardiac CT to guide left ventricular lead implantation for CRT upgrades. Journal of Cardiovascular Electrophysiology, 2021, 32, 802-812.	1.7	14
10	Noninvasive electrocardiographic assessment of ventricular activation and remodeling response to cardiac resynchronization therapy. Heart Rhythm O2, 2021, 2, 12-18.	1.7	6
11	The effect of centre volume and procedure location on major complications and mortality from transvenous lead extraction: an ESC EHRA EORP European Lead Extraction ConTRolled ELECTRa Registry subanalysis—Author's reply. Europace, 2021, 23, 1149-1150.	1.7	1
12	Leadless Left Ventricular Endocardial Pacing and Left Bundle Branch Area Pacing for Cardiac Resynchronisation Therapy. Arrhythmia and Electrophysiology Review, 2021, 10, 45-50.	2.4	1
13	Clinical effectiveness of a dedicated cardiac resynchronization therapy pre-assessment clinic incorporating cardiac magnetic resonance imaging and cardiopulmonary exercise testing on patient selection and outcomes. IJC Heart and Vasculature, 2021, 34, 100800.	1.1	1
14	Automated Left Ventricle Ischemic Scar Detection in CT Using Deep Neural Networks. Frontiers in Cardiovascular Medicine, 2021, 8, 655252.	2.4	12
15	Multipoint pacing for cardiac resynchronisation therapy in patients with heart failure: A systematic review and metaâ€analysis. Journal of Cardiovascular Electrophysiology, 2021, 32, 2577-2589.	1.7	10
16	The physiological effects of cardiac resynchronization therapy on aortic and pulmonary flow and dynamic and static components of systemic impedance. Heart Rhythm O2, 2021, 2, 365-373.	1.7	0
17	The importance of leadless pacemaker positioning in relation to subcutaneous implantable cardioverter-defibrillator sensing in completely leadless cardiac resynchronization and defibrillation systems. HeartRhythm Case Reports, 2021, 7, 628-632.	0.4	5
18	Long-term survival following transvenous lead extraction: Importance of indication and comorbidities. Heart Rhythm, 2021, 18, 1566-1576.	0.7	19

BALDEEP SIDHU

#	Article	IF	CITATIONS
19	Technical feasibility of leadless left bundle branch area pacing for cardiac resynchronisation: a case series. European Heart Journal - Case Reports, 2021, 5, ytab379.	0.6	10
20	Non-invasive simulated electrical and measured mechanical indices predict response to cardiac resynchronization therapy. Computers in Biology and Medicine, 2021, 138, 104872.	7.0	4
21	"ls multipoint pacing superior to optimized singleâ€point pacing?â€â€"Authors' reply. Journal of Cardiovascular Electrophysiology, 2021, 32, 3280-3281.	1.7	1
22	Endocardial left ventricular pacing. Herz, 2021, 46, 526-532.	1.1	3
23	First-Phase Ejection Fraction Predicts Response to Cardiac Resynchronization Therapy and Adverse Outcomes. JACC: Cardiovascular Imaging, 2021, 14, 2275-2285.	5.3	7
24	Atrial fibrillation in cardiac resynchronization therapy. Heart Rhythm O2, 2021, 2, 784-795.	1.7	5
25	Combined computed tomographic perfusion and mechanics with predicted activation pattern can successfully guide implantation of a wireless endocardial pacing system. Europace, 2020, 22, 298.	1.7	13
26	Evidence of reverse electrical remodelling by non-invasive electrocardiographic imaging to assess acute and chronic changes in bulk ventricular activation following cardiac resynchronisation therapy. Journal of Electrocardiology, 2020, 58, 96-102.	0.9	4
27	Economic evaluation of a dedicated cardiac resynchronisation therapy preassessment clinic. Open Heart, 2020, 7, e001249.	2.3	6
28	Financial and resource costs of transvenous lead extraction in a high-volume lead extraction centre. Heart, 2020, 106, 931-937.	2.9	6
29	The effect of centre volume and procedure location on major complications and mortality from transvenous lead extraction: an ESC EHRA EORP European Lead Extraction ConTRolled ELECTRa registry subanalysis. Europace, 2020, 22, 1718-1728.	1.7	22
30	Leadless left ventricular endocardial pacing in nonresponders to conventional cardiac resynchronization therapy. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 966-973.	1.2	17
31	Completely Leadless Cardiac Resynchronization Defibrillator System. JACC: Clinical Electrophysiology, 2020, 6, 588-589.	3.2	21
32	High mean entropy calculated from cardiac MRI texture analysis is associated with antitachycardia pacing failure. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 737-745.	1.2	3
33	His-bundle and left bundle pacing with optimized atrioventricular delay achieve superior electrical synchrony over endocardial and epicardial pacing in left bundle branch block patients. Heart Rhythm, 2020, 17, 1922-1929.	0.7	44
34	Tracking the motion of intracardiac structures aids the development of future leadless pacing systems. Journal of Cardiovascular Electrophysiology, 2020, 31, 2431-2439.	1.7	6
35	A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations. PLoS ONE, 2020, 15, e0235145.	2.5	59
36	Left ventricular endocardial pacing is less arrhythmogenic than conventional epicardial pacing when pacing in proximity to scar. Heart Rhythm, 2020, 17, 1262-1270.	0.7	16

BALDEEP SIDHU

#	Article	IF	CITATIONS
37	Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction. Lecture Notes in Computer Science, 2020, 2020, 284-293.	1.3	14
38	Successful percutaneous femoral extraction of a detached tricuspid valveâ€inâ€valve balloon delivery system. Clinical Case Reports (discontinued), 2019, 7, 1577-1581.	0.5	0
39	Prolonged lead dwell time and lead burden predict bailout transfemoral lead extraction. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 1355-1364.	1.2	13
40	Sex-Dependent QRS Guidelines for Cardiac Resynchronization Therapy Using Computer Model Predictions. Biophysical Journal, 2019, 117, 2375-2381.	0.5	14
41	Optimization of CRT programming using nonâ€invasive electrocardiographic imaging to assess the acute electrical effects of multipoint pacing. Journal of Arrhythmia, 2019, 35, 267-275.	1.2	11
42	Chronic ventricular lead perforation: Expect the unexpected. Clinical Case Reports (discontinued), 2019, 7, 465-468.	0.5	1
43	Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity. Heart Rhythm, 2019, 16, 1242-1250.	0.7	24
44	Pacing in proximity to scar during cardiac resynchronization therapy increases local dispersion of repolarization and susceptibility to ventricular arrhythmogenesis. Heart Rhythm, 2019, 16, 1475-1483.	0.7	42
45	Comparison of Echocardiographic and Electrocardiographic Mapping for Cardiac Resynchronisation Therapy Optimisation. Cardiology Research and Practice, 2019, 2019, 1-9.	1.1	7
46	Left ventricular activation-recovery interval variability predicts spontaneous ventricular tachyarrhythmia in patients with heart failure. Heart Rhythm, 2019, 16, 702-709.	0.7	11
47	Understanding non-response to cardiac resynchronisation therapy: common problems and potential solutions. Heart Failure Reviews, 2019, 24, 41-54.	3.9	59
48	Predictors of mortality and outcomes in transvenous lead extraction for systemic and local infection cohorts. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 73-84.	1.2	20
49	Transvenous lead extraction in patients with cardiac resynchronization therapy devices is not associated with increased 30-day mortality. Europace, 2019, 21, 928-936.	1.7	10
50	Complex Interaction Between Low-Frequency APD Oscillations and Beat-to-Beat APD Variability in Humans Is Governed by the Sympathetic Nervous System. Frontiers in Physiology, 2019, 10, 1582.	2.8	7
51	Chronic Right Ventricular Pacing in the Heart Failure Population. Current Heart Failure Reports, 2018, 15, 61-69.	3.3	16
52	The role of transvenous lead extraction in the management of redundant or malfunctioning pacemaker and defibrillator leads post ELECTRa. Europace, 2018, 20, 1733-1740.	1.7	16
53	Guidance for Optimal Site Selection of a Leadless Left Ventricular Endocardial Electrode Improves Acute Hemodynamic Response and Chronic Remodeling. JACC: Clinical Electrophysiology, 2018, 4, 860-868.	3.2	19
54	Variation in activation time during bipolar vs extended bipolar left ventricular pacing. Journal of Cardiovascular Electrophysiology, 2018, 29, 1675-1681.	1.7	0

BALDEEP SIDHU

#	Article	IF	CITATIONS
55	Optimal site selection and image fusion guidance technology to facilitate cardiac resynchronization therapy. Expert Review of Medical Devices, 2018, 15, 555-570.	2.8	13
56	Beat-to-Beat Variability of Ventricular Action Potential Duration Oscillates at Low Frequency During Sympathetic Provocation in Humans. Frontiers in Physiology, 2018, 9, 147.	2.8	22
57	Complications associated with cardiac resynchronization therapy upgrades versus <i>de novo</i> implantations. Expert Review of Cardiovascular Therapy, 2018, 16, 607-615.	1.5	6
58	Leadless Left Bundle Branch Area Pacing in Cardiac Resynchronisation Therapy: Advances, Challenges and Future Directions. Frontiers in Physiology, 0, 13, .	2.8	5