José E Pérez-OrtÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349647/publications.pdf

Version: 2024-02-01

119 papers 5,544 citations

38 h-index 95266 68 g-index

130 all docs

130 docs citations

130 times ranked

5840 citing authors

#	Article	IF	Citations
1	Cytoplasmic $5\hat{a}\in^2$ - $3\hat{a}\in^2$ exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Frontiers in Genetics, 2014, 5, 1.	2.3	427
2	Sus1, a Functional Component of the SAGA Histone Acetylase Complex and the Nuclear Pore-Associated mRNA Export Machinery. Cell, 2004, 116, 75-86.	28.9	330
3	Gene Expression Is Circular: Factors for mRNA Degradation Also Foster mRNA Synthesis. Cell, 2013, 153, 1000-1011.	28.9	311
4	CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Research, 2004, 33, D364-D368.	14.5	288
5	Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains. Genome Research, 2002, 12, 1533-1539.	5.5	243
6	Genomic Run-On Evaluates Transcription Rates for All Yeast Genes and Identifies Gene Regulatory Mechanisms. Molecular Cell, 2004, 15, 303-313.	9.7	233
7	A Complete Set of Nascent Transcription Rates for Yeast Genes. PLoS ONE, 2010, 5, e15442.	2.5	151
8	Specific and global regulation of mRNA stability during osmotic stress in <i>Saccharomyces cerevisiae</i> . Rna, 2009, 15, 1110-1120.	3.5	133
9	Eukaryotic mRNA Decay: Methodologies, Pathways, and Links to Other Stages of Gene Expression. Journal of Molecular Biology, 2013, 425, 3750-3775.	4.2	125
10	Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Research, 2000, 28, 1000-1010.	14.5	120
11	Genomics and gene transcription kinetics in yeast. Trends in Genetics, 2007, 23, 250-257.	6.7	105
12	The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. Journal of Cell Biology, 2008, 182, 897-910.	5.2	100
13	Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation. Applied and Environmental Microbiology, 2007, 73, 3049-3060.	3.1	96
14	Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation. Applied and Environmental Microbiology, 2000, 66, 2057-2061.	3.1	95
15	An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study., 1999, 64, 698-708.		94
16	Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6. Yeast, 2002, 19, 1261-1276.	1.7	89
17	HAT1 and HAT2 Proteins Are Components of a Yeast Nuclear Histone Acetyltransferase Enzyme Specific for Free Histone H4. Journal of Biological Chemistry, 1998, 273, 12599-12605.	3.4	88
18	Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast, 2000, 16, 139-148.	1.7	88

#	Article	IF	CITATIONS
19	Chimeric Genomes of Natural Hybrids of <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces kudriavzevii</i> . Applied and Environmental Microbiology, 2009, 75, 2534-2544.	3.1	83
20	Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities. PLoS ONE, 2011, 6, e17272.	2.5	82
21	A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology, 2007, 114, 83-91.	4.7	73
22	Comprehensive Transcriptional Analysis of the Oxidative Response in Yeast. Journal of Biological Chemistry, 2008, 283, 17908-17918.	3.4	69
23	A method for genome-wide analysis of DNA helical tension by means of psoralen–DNA photobinding. Nucleic Acids Research, 2010, 38, e182-e182.	14.5	65
24	Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 2004, 279, 12386-12395.	3.4	60
25	Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Molecular Genetics and Genomics, 1992, 231, 395-400.	2.4	59
26	DNA chips for yeast biotechnology. The case of wine yeasts. Journal of Biotechnology, 2002, 98, 227-241.	3.8	59
27	Regulon-Specific Control of Transcription Elongation across the Yeast Genome. PLoS Genetics, 2009, 5, e1000614.	3.5	59
28	Whole Genome Analysis of a Wine Yeast Strain. Comparative and Functional Genomics, 2001, 2, 69-79.	2.0	58
29	The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast, 2008, 25, 85-92.	1.7	58
30	A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. International Microbiology, 2004, 7, 199-206.	2.4	56
31	A new glucose-repressible gene identified from the analysis of chromatin structure in deletion mutants of yeastSUC2 locus. Yeast, 1991, 7, 379-389.	1.7	52
32	Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability. PLoS ONE, 2015, 10, e0122709.	2.5	49
33	Optimized Method To Obtain Stable Food-Safe Recombinant Wine Yeast Strains. Journal of Agricultural and Food Chemistry, 1998, 46, 1689-1693.	5.2	46
34	SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast, 2002, 19, 43-54.	1.7	45
35	The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Research, 2016, 44, 3643-3658.	14.5	45
36	Mitochondrial inheritance and fermentative: oxidative balance in hybrids between <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces uvarum</i> Yeast, 2008, 25, 485-500.	1.7	44

#	Article	IF	CITATIONS
37	Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 653-664.	1.9	44
38	The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biology, 2007, 8, R119.	9.6	43
39	The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors. Nucleic Acids Research, 2010, 38, 4651-4664.	14.5	40
40	Isolation and Characterization of an Fe(III)-Chelating Compound Produced by Pseudomonas syringae. Applied and Environmental Microbiology, 1986, 52, 157-160.	3.1	40
41	Study of the First Hours of Microvinification by the Use of Osmotic Stress-response Genes as Probes. Systematic and Applied Microbiology, 2002, 25, 153-161.	2.8	39
42	The role of histones and their modifications in the informative content of chromatin. Experientia, 1993, 49, 780-788.	1.2	37
43	There is a steadyâ€state transcriptome in exponentially growing yeast cells. Yeast, 2010, 27, 413-422.	1.7	36
44	The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nature Communications, 2019, 10, 1298.	12.8	36
45	Bromodomain factor 1 (Bdf1) protein interacts with histones. FEBS Letters, 2001, 496, 31-35.	2.8	35
46	Common gene expression strategies revealed by genome-wide analysis in yeast. Genome Biology, 2007, 8, R222.	9.6	33
47	Arginase Activity is a Useful Marker of Nitrogen Limitation During Alcoholic Fermentations. Systematic and Applied Microbiology, 2003, 26, 471-479.	2.8	31
48	Genome-wide studies of mRNA synthesis and degradation in eukaryotes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 604-615.	1.9	31
49	Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Research, 2017, 45, 12401-12412.	14.5	30
50	The POT1 gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation. Molecular Microbiology, 1992, 6, 1867-1875.	2.5	29
51	Partial purification and properties of two histone acetyltransferases from the yeast, Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 1985, 239, 184-190.	3.0	28
52	Chromatin structure of yeast genes. Yeast, 1989, 5, 219-238.	1.7	28
53	Structural characterization of chromosome I size variants from a natural yeast strain. Yeast, 2003, 20, 171-183.	1.7	28
54	Expression Levels and Patterns of Glycolytic Yeast Genes During Wine Fermentation. Systematic and Applied Microbiology, 2000, 23, 300-303.	2.8	26

#	Article	IF	CITATIONS
55	Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability. RNA Biology, 2019, 16, 1659-1666.	3.1	26
56	The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Research, 2019, 47, 9524-9541.	14.5	26
57	Saccharomyces cerevisiae Signature Genes for Predicting Nitrogen Deficiency during Alcoholic Fermentation. Applied and Environmental Microbiology, 2007, 73, 5363-5369.	3.1	25
58	Nonsense-Mediated mRNA Decay Controls the Changes in Yeast Ribosomal Protein Pre-mRNAs Levels upon Osmotic Stress. PLoS ONE, 2013, 8, e61240.	2.5	24
59	Analysis of the Structure of a Natural Alternating d(TA)n Sequence in Yeast Chromatin. , 1997, 13, 313-326.		23
60	Genomics of mRNA turnover. Briefings in Functional Genomics & Proteomics, 2008, 6, 282-291.	3.8	23
61	Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Research, 2015, 43, 787-802.	14.5	23
62	The importance of controlling mRNA turnover during cell proliferation. Current Genetics, 2016, 62, 701-710.	1.7	23
63	Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 731-743.	1.9	23
64	Growth rate controls mRNA turnover in steady and non-steady states. RNA Biology, 2016, 13, 1175-1181.	3.1	21
65	Making your own gene library. Biochemical Education, 1997, 25, 237-242.	0.1	20
66	What do you mean by transcription rate?. BioEssays, 2013, 35, 1056-1062.	2.5	19
67	The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally. Epigenetics and Chromatin, 2018, 11, 13.	3.9	19
68	A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194414.	1.9	19
69	Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Frontiers in Molecular Biosciences, 2021, 8, 663209.	3.5	19
70	DNase I sensitivity of the chromatin of the yeast SUC2 gene for invertase. Molecular Genetics and Genomics, 1986, 205, 422-427.	2.4	18
71	Transcriptional and Structural Study of a Region of Two Convergent Overlapping Yeast Genes. Current Microbiology, 1999, 39, 369-373.	2.2	18
72	The Conserved Foot Domain of RNA Pol II Associates with Proteins Involved in Transcriptional Initiation and/or Early Elongation. Genetics, 2011, 189, 1235-1248.	2.9	17

#	Article	IF	Citations
73	External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1248-1255.	1.9	17
74	Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics and Chromatin, 2017, 10, 58.	3.9	17
75	News & Notes: Stochastic Nucleosome Positioning in a Yeast Chromatin Region Is Not Dependent on Histone H1. Current Microbiology, 1999, 39, 168-172.	2.2	16
76	Title is missing!. Biotechnology Letters, 1999, 21, 271-274.	2.2	14
77	YeastHAT1andHAT2deletions have different life-span and transcriptome phenotypes. FEBS Letters, 2005, 579, 4063-4068.	2.8	14
78	Topoisomerase II regulates yeast genes with singular chromatin architectures. Nucleic Acids Research, 2013, 41, 9243-9256.	14.5	14
79	Measuring RNA polymerase activity genome-wide with high-resolution run-on-based methods. Methods, 2019, 159-160, 177-182.	3.8	14
80	Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genetics, 2021, 17, e1009520.	3.5	14
81	A genomic study of the inter-ORF distances inSaccharomyces cerevisiae. Yeast, 2006, 23, 689-699.	1.7	13
82	The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Research, 2017, 45, 9302-9318.	14.5	13
83	Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biology, 2021, 18, 1310-1323.	3.1	12
84	Genomic-Wide Methods to Evaluate Transcription Rates in Yeast. Methods in Molecular Biology, 2011, 734, 25-44.	0.9	11
85	A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Reports, 2018, 19, .	4.5	11
86	The total mRNA concentration buffering system in yeast is global rather than gene-specific. Rna, 2021, 27, 1281-1290.	3.5	11
87	The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 405-419.	1.9	10
88	Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biology, 2021, 18, 1206-1220.	3.1	10
89	Biotin-Genomic Run-On (Bio-GRO): A High-Resolution Method for the Analysis of Nascent Transcription in Yeast. Methods in Molecular Biology, 2016, 1361, 125-139.	0.9	10
90	Mechanism-based Clustering of Genome-wide RNA Levels: Roles of Transcription and Transcript-Degradation Rates., 2009,, 237-255.		10

#	Article	IF	CITATIONS
91	Chromatin structure of the $5\hat{a} \in 2$ flanking region of the yeastLEU2 gene. Molecular Genetics and Genomics, 1989, 217, 464-470.	2.4	9
92	Chromatin structure of the yeastFBP1 gene: Transcription-dependent changes in the regulatory and coding regions. Yeast, 1993, 9, 1229-1240.	1.7	9
93	The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Research, 1998, 26, 4588-4596.	14.5	9
94	Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast. BMC Genomics, 2016, 17, 183.	2.8	9
95	Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 794-802.	1.9	9
96	Global Estimation of mRNA Stability in Yeast. Methods in Molecular Biology, 2011, 734, 3-23.	0.9	8
97	The telomeric Cdc13–Stn1–Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Research, 2019, 47, 6250-6268.	14.5	8
98	A Natural A/T-Rich Sequence from the Yeast FBP1 Gene Exists as a Cruciform in Escherichia coli Cells. Plasmid, 1993, 29, 222-232.	1.4	6
99	Functional analysis of 12 ORFs fromSaccharomyces cerevisiae chromosome II., 1999, 15, 913-919.		6
100	A genomic view of mRNA turnover in yeast. Comptes Rendus - Biologies, 2011, 334, 647-654.	0.2	6
101	On the presence of HMG proteins in yeast. FEBS Letters, 1986, 197, 179-182.	2.8	5
102	Rapid plasmid isolation. A laboratory experiment for intermediate and advanced students. Biochemical Education, 1986, 14, 142-144.	0.1	5
103	A rapid method for the screening of plasmids in transformed yeast strains. Current Microbiology, 1988, 17, 19-22.	2.2	5
104	The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription, 2012, 3, 39-44.	3.1	5
105	Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biology, 2021, 18, 1458-1474.	3.1	5
106	In vivo assembly of chromatin on pBR322 sequences cloned into yeast plasmids. Plasmid, 1989, 21, 113-119.	1.4	4
107	A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them. Cells, 2021, 10, 334.	4.1	4
108	Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast, 2000, 16, 139-148.	1.7	4

#	Article	IF	CITATIONS
109	Chromatin structure of transposon Tn903 cloned into a yeast plasmid. Plasmid, 1989, 22, 143-150.	1.4	3
110	Analysis of chromatin structure and composition. Biochemical Education, 1988, 16, 45-47.	0.1	2
111	Detection of Non-B-DNA Secondary Structures by S1 Nuclease Digestion. Journal of Chemical Education, 1998, 75, 762.	2.3	2
112	Genomic Insights into the Different Layers of Gene Regulation in Yeast. Genetics Research International, 2011, 2011, 1-12.	2.0	2
113	Presence of nucleosomes inPenicillium chrysogenum. Current Microbiology, 1987, 15, 151-154.	2.2	1
114	mRNAStabâ€"a web application for mRNA stability analysis. Bioinformatics, 2013, 29, 813-814.	4.1	1
115	Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing. , 2017, , 573-604.		1
116	DNA Arrays. , 2009, , 469-488.		0
117	Genomic and Proteomic Analysis of Wine Yeasts. , 2011, , 143-168.		O
118	A web application for the unspecific detection of differentially expressed DNA regions in strand-specific expression data: Fig. 1 Bioinformatics, 2015, 31, 3228-3230.	4.1	0
119	High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq. Methods in Molecular Biology, 2022, 2477, 57-70.	0.9	0