Zheming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346763/publications.pdf

Version: 2024-02-01

131	6,312	41 h-index	74
papers	citations		g-index
136	136	136	6134
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Insights into sorption speciation of uranium on phlogopite: Evidence from TRLFS and DFT calculation. Journal of Hazardous Materials, 2022, 427, 128164.	6.5	11
2	Crystallization and Phase Transformations of Aluminum (Oxy)hydroxide Polymorphs in Caustic Aqueous Solution. Inorganic Chemistry, 2021, 60, 9820-9832.	1.9	15
3	Molecular Examination of Ion-Pair Competition in Alkaline Aluminate Solutions Using In Situ Liquid SIMS. Analytical Chemistry, 2021, 93, 1068-1075.	3.2	6
4	No Hydrogen Bonding between Water and Hydrophilic Single Crystal MgO Surfaces?. Journal of Physical Chemistry C, 2021, 125, 26132-26138.	1.5	8
5	Radiation-Induced Interfacial Hydroxyl Transformation on Boehmite and Gibbsite Basal Surfaces. Journal of Physical Chemistry C, 2020, 124, 22185-22191.	1.5	8
6	Two-step route to size and shape controlled gibbsite nanoplates and the crystal growth mechanism. CrystEngComm, 2020, 22, 2555-2565.	1.3	10
7	Photo-production of reactive oxygen species and degradation of dissolved organic matter by hematite nanoplates functionalized by adsorbed oxalate. Environmental Science: Nano, 2020, 7, 2278-2292.	2.2	21
8	Shape-preserving amorphous-to-crystalline transformation of CaCO ₃ revealed by in situ TEM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3397-3404.	3.3	97
9	Surface Hydration and Hydroxyl Configurations of Gibbsite and Boehmite Nanoplates. Journal of Physical Chemistry C, 2020, 124, 5275-5285.	1.5	21
10	Evolution of Radicals from the Photolysis of High Ionic Strength Alkaline Nitrite Solutions. Journal of Physical Chemistry A, 2020, 124, 3019-3025.	1.1	4
11	Effect of Cr(III) Adsorption on the Dissolution of Boehmite Nanoparticles in Caustic Solution. Environmental Science & Environ	4.6	8
12	The role of surface hydroxyls on the radiolysis of gibbsite and boehmite nanoplatelets. Journal of Hazardous Materials, 2020, 398, 122853.	6.5	18
13	Surface-Active \hat{I}^2 -Caryophyllene Oxidation Products at the Air/Aqueous Interface. ACS Earth and Space Chemistry, 2019, 3, 1740-1748.	1.2	8
14	Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environmental Science & Environment	4.6	101
15	Americium incorporation into studtite: a theoretical and experimental study. Dalton Transactions, 2019, 48, 13057-13063.	1.6	4
16	Synthesis and surface spectroscopy of $\hat{l}\pm$ -pinene isotopologues and their corresponding secondary organic material. Chemical Science, 2019, 10, 8390-8398.	3.7	8
17	Study on the Impacts of Capillary Number and Initial Water Saturation on the Residual Gas Distribution by NMR. Energies, 2019, 12, 2714.	1.6	4
18	The energetic basis for hydroxyapatite mineralization by amelogenin variants provides insights into the origin of <i>amelogenesis imperfecta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13867-13872.	3.3	20

#	Article	IF	CITATIONS
19	Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at Hydrothermal Conditions. Crystal Growth and Design, 2019, 19, 5557-5567.	1.4	19
20	Cr(III) Adsorption by Cluster Formation on Boehmite Nanoplates in Highly Alkaline Solution. Environmental Science & Environmen	4.6	42
21	Cooperative Adsorption of Trehalose to DPPC Monolayers at the Water–Air Interface Studied with Vibrational Sum Frequency Generation. Journal of Physical Chemistry B, 2019, 123, 8931-8938.	1.2	7
22	Organic Enrichment at Aqueous Interfaces: Cooperative Adsorption of Glucuronic Acid to DPPC Monolayers Studied with Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2019, 123, 5621-5632.	1.1	14
23	Interdisciplinary Round-Robin Test on Molecular Spectroscopy of the U(VI) Acetate System. ACS Omega, 2019, 4, 8167-8177.	1.6	5
24	Synthesis of 2D Hexagonal Hematite Nanosheets and the Crystal Growth Mechanism. Inorganic Chemistry, 2019, 58, 16727-16735.	1.9	32
25	Atmospheric \hat{I}^2 -Caryophyllene-Derived Ozonolysis Products at Interfaces. ACS Earth and Space Chemistry, 2019, 3, 158-169.	1.2	10
26	Direct Observation of the Orientational Anisotropy of Buried Hydroxyl Groups inside Muscovite Mica. Journal of the American Chemical Society, 2019, 141, 2135-2142.	6.6	23
27	Sustainable Disposal of Cr(VI): Adsorption–Reduction Strategy for Treating Textile Wastewaters with Amino-Functionalized Boehmite Hazardous Solid Wastes. ACS Sustainable Chemistry and Engineering, 2018, 6, 6811-6819.	3.2	43
28	Dehydration of the Uranyl Peroxide Studtite, [UO ₂ 0) ₂]·2H ₂ 0, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis. Inorganic Chemistry, 2018, 57, 1735-1743.	1.9	31
29	Crystallographic and Spectroscopic Characterization of Americium Complexes Containing the Bis[(phosphino)methyl]pyridine-1-oxide (NOPOPO) Ligand Platform. Inorganic Chemistry, 2018, 57, 2278-2287.	1.9	17
30	Vibrational studies of saccharide-induced lipid film reorganization at aqueous/air interfaces. Chemical Physics, 2018, 512, 104-110.	0.9	15
31	Atomic Origins of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & amp; Interfaces, 2018, 10, 3011-3019.	4.0	23
32	Size and Morphology Controlled Synthesis of Boehmite Nanoplates and Crystal Growth Mechanisms. Crystal Growth and Design, 2018, 18, 3596-3606.	1.4	82
33	Simulation of solute transport through heterogeneous networks: analysis using the method of moments and the statistics of local transport characteristics. Scientific Reports, 2018, 8, 3780.	1.6	4
34	Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves. Chemical Engineering Journal, 2018, 332, 160-168.	6.6	69
35	Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method. Journal of Hazardous Materials, 2018, 341, 268-276.	6. 5	101
36	Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. ACS Applied Nano Materials, 2018, 1, 7115-7128.	2.4	79

#	Article	IF	Citations
37	Experimental study of drying effects during supercritical CO2 displacement in a pore network. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	4
38	Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments. Environmental Science & Experiments. Environmental Science & Experiments. Environmental Science & Experiments. Environmental Science & Experiments.	4.6	15
39	<i>In Situ</i> Synthesis of \hat{I}^3 -AlOOH and Synchronous Adsorption Separation of V(V) from Highly Concentrated Cr(VI) Multiplex Complex solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 6674-6681.	3.2	27
40	Phosphate-Induced Immobilization of Uranium in Hanford Sediments. Environmental Science & Emp; Technology, 2016, 50, 13486-13494.	4.6	37
41	Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers. Geochimica Et Cosmochimica Acta, 2016, 175, 86-99.	1.6	68
42	Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1. Geochimica Et Cosmochimica Acta, 2016, 193, 160-175.	1.6	38
43	Can Cr(<scp>iii</scp>) substitute for Al(<scp>iii</scp>) in the structure of boehmite?. RSC Advances, 2016, 6, 107628-107637.	1.7	15
44	Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors. Scientific Reports, 2016, 6, 36657.	1.6	45
45	Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes. Electroanalysis, 2016, 28, 2109-2117.	1.5	16
46	Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate. Environmental Science & Environmental	4.6	52
47	Uranium fate in Hanford sediment altered by simulated acid waste solutions. Applied Geochemistry, 2015, 63, 1-9.	1.4	9
48	A Fluorescence-Based Method for Rapid and Direct Determination of Polybrominated Diphenyl Ethers in Water. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	0.7	5
49	Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures. Biotechnology for Biofuels, 2015, 8, 203.	6.2	86
50	Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. Geochimica Et Cosmochimica Acta, 2015, 151, 133-149.	1.6	21
51	Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides. Geochimica Et Cosmochimica Acta, 2015, 163, 299-310.	1.6	41
52	Use of Solvatochromism to Assay Preferential Solvation of a Prototypic Catalytic Site. Topics in Catalysis, 2015, 58, 258-270.	1.3	2
53	Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Research, 2015, 69, 307-317.	5 . 3	43
54	Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS. Journal of Luminescence, 2015, 157, 416-423.	1.5	15

#	Article	IF	Citations
55	Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate. Chemical Geology, 2014, 364, 66-75.	1.4	75
56	Excited States and Luminescent Properties of UO ₂ F ₂ and Its Solvated Complexes in Aqueous Solution. Inorganic Chemistry, 2014, 53, 7340-7350.	1.9	20
57	A transâ€outer membrane porinâ€cytochrome protein complex for extracellular electron transfer by <scp><i>G</i></scp> <i>eobacter sulfurreducens</i> â€ <scp>PCA</scp> . Environmental Microbiology Reports, 2014, 6, 776-785.	1.0	178
58	Long-term kinetics of uranyl desorption from sediments under advective conditions. Water Resources Research, 2014, 50, 855-870.	1.7	14
59	Investigation of U(VI) Adsorption in Quartz–Chlorite Mineral Mixtures. Environmental Science & Technology, 2014, 48, 7766-7773.	4.6	16
60	Photophysics and Luminescence Spectroelectrochemistry of [Tc(dmpe) $<$ sub $>$ 3 $<$ /sub $>$] $<$ sup $>+$ /2+ $<$ /sup $>$ (dmpe = 1,2- $<$ i $>$ bis $<$ /i $>($ dimethylphosphino)ethane). Journal of Physical Chemistry A, 2013, 117, 12749-12758.	1,1	15
61	Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6346-6351.	3.3	179
62	Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2. Fluid Phase Equilibria, 2013, 338, 155-163.	1.4	34
63	The surface structure of α-uranophane and its interaction with Eu(III) – An integrated computational and fluorescence spectroscopy study. Geochimica Et Cosmochimica Acta, 2013, 103, 184-196.	1.6	6
64	Reductive dissolution of goethite and hematite by reduced flavins. Geochimica Et Cosmochimica Acta, 2013, 121, 139-154.	1.6	41
65	Fe _{3–<i>x</i>} Ti _{<i>x</i>} O ₄ Nanoparticles as Tunable Probes of Microbial Metal Oxidation. Journal of the American Chemical Society, 2013, 135, 8896-8907.	6.6	43
66	Transport and retention of engineered nanoporous particles in porous media: Effects of concentration and flow dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 417, 89-98.	2.3	30
67	Comparative reactivity study of forsterite and antigorite in wet supercritical CO2 by in situ infrared spectroscopy. International Journal of Greenhouse Gas Control, 2013, 18, 246-255.	2.3	43
68	Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2. Microscopy and Microanalysis, 2013, 19, 268-275.	0.2	1
69	A thermodynamic model for predicting mineral reactivity in supercritical carbon dioxide: I. Phase behavior of carbon dioxide–water–chloride salt systems across the H2O-rich to the CO2-rich regions. Chemical Geology, 2012, 322-323, 151-171.	1.4	78
70	Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA). Environmental Science & Eamp; Technology, 2012, 46, 2132-2140.	4.6	20
71	Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction. Separation Science and Technology, 2012, 47, 1507-1513.	1.3	11
72	In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide. Journal of Physical Chemistry A, 2012, 116, 4768-4777.	1.1	61

#	Article	IF	CITATIONS
73	Redox Reactions of Reduced Flavin Mononucleotide (FMN), Riboflavin (RBF), and Anthraquinone-2,6-disulfonate (AQDS) with Ferrihydrite and Lepidocrocite. Environmental Science & Environmental Science	4.6	98
74	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Frontiers in Microbiology, 2012, 3, 37.	1.5	186
75	The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO ₂ . Environmental Science & Environmental Science	4.6	38
76	Electronic and Molecular Structures oftrans-Dioxotechnetium(V) Polypyridyl Complexes in the Solid State. Inorganic Chemistry, 2011, 50, 5815-5823.	1.9	19
77	Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Environmental Science & Environme	4.6	60
78	In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO ₂ . Environmental Science & CO ₂ .	4.6	153
79	Contribution of Extracellular Polymeric Substances from <i>Shewanella</i> sp. HRCR-1 Biofilms to U(VI) Immobilization. Environmental Science & Eamp; Technology, 2011, 45, 5483-5490.	4.6	149
80	Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: A fluorescence spectroscopy study. Geochimica Et Cosmochimica Acta, 2011, 75, 2965-2979.	1.6	35
81	Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser-Induced Fluorescence Studies. Journal of Physical Chemistry C, 2011, 115, 21120-21127.	1.5	14
82	Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: Resolving interfacial inhomogeneities of "identical―molecular groups. Journal of Chemical Physics, 2011, 135, 241102.	1.2	96
83	Identification and Characterization of UndA _{HRCR-6} , an Outer Membrane Endecaheme <i>c</i> >-Type Cytochrome of Shewanella sp. Strain HRCR-6. Applied and Environmental Microbiology, 2011, 77, 5521-5523.	1.4	32
84	Structure of a bacterial cell surface decaheme electron conduit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9384-9389.	3.3	301
85	Characterization of uranium-contaminated sediments from beneath a nuclear waste storage tank from Hanford, Washington: Implications for contaminant transport and fate. Geochimica Et Cosmochimica Acta, 2010, 74, 1363-1380.	1.6	36
86	In-Situ Measurements of Engineered Nanoporous Particle Transport in Saturated Porous Media. Environmental Science & Environmen	4.6	25
87	Microbial Reduction of Intragrain U(VI) in Contaminated Sediment. Environmental Science & Emp; Technology, 2009, 43, 4928-4933.	4.6	24
88	Uranium Phases in Contaminated Sediments below Hanford's U Tank Farm. Environmental Science & Lamp; Technology, 2009, 43, 4280-4286.	4.6	42
89	Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments. Environmental Science & Environmental S	4.6	30
90	Spatially Resolved U(VI) Partitioning and Speciation: Implications for Plume Scale Behavior of Contaminant U in the Hanford Vadose Zone. Environmental Science & Environmental Science & 2247-2253.	4.6	8

#	Article	IF	Citations
91	The roles of outer membrane cytochromes of <i>Shewanella</i> and <i>Geobacter</i> in extracellular electron transfer. Environmental Microbiology Reports, 2009, 1, 220-227.	1.0	285
92	Hydrogenase―and outer membrane <i>c</i> àâ€type cytochromeâ€facilitated reduction of technetium(VII) by <i>Shewanella oneidensis</i> MRâ€1. Environmental Microbiology, 2008, 10, 125-136.	1.8	74
93	PowerSlicing to determine fluorescence lifetimes of water-soluble organic matter derived from soils, plant biomass, and animal manures. Analytical and Bioanalytical Chemistry, 2008, 390, 2189-2194.	1.9	6
94	Direct Involvement of Type II Secretion System in Extracellular Translocation of <i>Shewanella oneidensis</i> Outer Membrane Cytochromes MtrC and OmcA. Journal of Bacteriology, 2008, 190, 5512-5516.	1.0	113
95	Scaleâ€dependent desorption of uranium from contaminated subsurface sediments. Water Resources Research, 2008, 44, .	1.7	123
96	Effect of Saline Waste Solution Infiltration Rates on Uranium Retention and Spatial Distribution in Hanford Sediments. Environmental Science & Environmental Science & 2008, 42, 1973-1978.	4.6	6
97	Kinetics of Reduction of Fe(III) Complexes by Outer Membrane Cytochromes MtrC and OmcA of <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2008, 74, 6746-6755.	1.4	89
98	A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals. Radiochimica Acta, 2008, 96, 591-598.	0.5	51
99	A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH ₂ DS). Radiochimica Acta, 2008, 96, 599-605.	0.5	6
100	Influence of calcium on microbial reduction of solid phase uranium(VI). Biotechnology and Bioengineering, 2007, 97, 1415-1422.	1.7	22
101	Adsorption of Uranyl on Gibbsite:  A Time-Resolved Laser-Induced Fluorescence Spectroscopy Study. Environmental Science & E	4.6	56
102	Kinetics of Microbial Reduction of Solid Phase U(VI). Environmental Science & Eamp; Technology, 2006, 40, 6290-6296.	4.6	25
103	The dissolution of synthetic Na-boltwoodite in sodium carbonate solutions. Geochimica Et Cosmochimica Acta, 2006, 70, 4836-4849.	1.6	30
104	Observation of aqueous Cm(III)/Eu(III) and UO22+ nanoparticulates at concentrations approaching solubility limit by laser-induced fluorescence spectroscopy. Journal of Alloys and Compounds, 2006, 418, 166-170.	2.8	6
105	c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis. PLoS Biology, 2006, 4, e268.	2.6	310
106	Fluorescence anisotropy studies of molecularly imprinted polymers. Luminescence, 2006, 21, 7-14.	1.5	15
107	The aqueous complexation of thorium with citrate under neutral to basic conditions. Radiochimica Acta, 2006, 94, .	0.5	15
108	Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c -Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 2006, 188, 4705-4714.	1.0	227

#	Article	IF	Citations
109	Hydrogen bubbles and formation of nanoporous silicon during electrochemical etching. Surface and Interface Analysis, 2005, 37, 555-561.	0.8	7
110	The solubility product of NaUO2PO4·xH2O determined in phosphate and carbonate solutions. Radiochimica Acta, 2005, 93, 401-408.	0.5	23
111	Complexation of Cm(III)/Eu(III) with silicates in basic solutions. Radiochimica Acta, 2005, 93, 741-748.	0.5	11
112	Reoxidation of Bioreduced Uranium under Reducing Conditions. Environmental Science & Emp; Technology, 2005, 39, 6162-6169.	4.6	157
113	Cryogenic Laser Induced U(VI) Fluorescence Studies of a U(VI) Substituted Natural Calcite:Â Implications to U(VI) Speciation in Contaminated Hanford Sediments. Environmental Science & Emp; Technology, 2005, 39, 2651-2659.	4.6	73
114	Luminescence from thetrans-Dioxotechnetium(V) Chromophore. Journal of the American Chemical Society, 2005, 127, 14978-14979.	6.6	22
115	Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochimica Et Cosmochimica Acta, 2005, 69, 1391-1403.	1.6	136
116	Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment. Environmental Science & Eachnology, 2005, 39, 7949-7955.	4.6	137
117	Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Functionalized Mesoporous Silica: A New Mercury-Free Sensor for Uranium Detection. Electroanalysis, 2004, 16, 870-873.	1.5	46
118	Self-Exchange Electron Transfer Kinetics and Reduction Potentials for Anthraquinone Disulfonate. Journal of Physical Chemistry A, 2004, 108, 3292-3303.	1.1	46
119	Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochimica Et Cosmochimica Acta, 2004, 68, 4519-4537.	1.6	110
120	Cryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters. Environmental Science & Env	4.6	164
121	Europium Uptake and Partitioning in Oat (Avena sativa) Roots as Studied by Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique. Environmental Science & Emp; Technology, 2003, 37, 5247-5253.	4.6	27
122	Steady-State Fluorescence Anisotropy Studies of Molecularly Imprinted Polymer Sensors. Materials Research Society Symposia Proceedings, 2003, 787, 331.	0.1	0
123	A fluorescence spectroscopic study on the speciation of Cm(III) and Eu(III) in the presence of organic chelates in highly basic solutions. Radiochimica Acta, 2003, 91, 329-338.	0.5	20
124	Thermodynamic model for the solubility of ThO2(am) in the aqueous Na+-H+-OHNO3H2O-EDTA system. Radiochimica Acta, 2003, 91, .	0.5	13
125	Artificial Aging of Phenanthrene in Porous Silicas Using Supercritical Carbon Dioxide. Environmental Science & Environmental S	4.6	5
126	Spectroscopic Elucidation of Lanthanide Cation Dissolution Mechanism in Borosilicate Glass. Materials Research Society Symposia Proceedings, 2001, 702, 1.	0.1	3

ZHEMING WANG

#	Article	IF	CITATIONS
127	Time-Resolved Fluorescence Anisotropies in Mixed Surfactant Solutions. Journal of Colloid and Interface Science, 1999, 218, 260-264.	5.0	10
128	Spectroscopic study of ion binding in synthetic polyelectrolytes using lanthanide ions. Inorganica Chimica Acta, 1995, 239, 139-143.	1.2	27
129	Quantitative determination of praesodymium(III)–neodymium(III)–holmium(III)–erbium(III) four-component systems by matrix–fourth derivative spectrophotometry. Analyst, The, 1994, 119, 2463-2466.	1.7	5
130	Luminescence spectroscopic study of europium(III) and terbium(III) with ethylenediamine in dimethyl sulfoxide. Journal of the Chemical Society Dalton Transactions, 1993, , 2791.	1.1	37
131	Studies on derivative fluorimetry. Part I. Determination of trace amounts of samarium, europium and terbium. Analyst, The, 1987, 112, 1081.	1.7	6