
Arsalan Aziz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346436/publications.pdf Version: 2024-02-01

Δρελιλη Δ717

#	Article	IF	CITATIONS
1	On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. International Journal of Heat and Mass Transfer, 2016, 100, 566-572.	4.8	159
2	Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124006.	2.6	90
3	On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. Journal of Magnetism and Magnetic Materials, 2016, 408, 99-106.	2.3	84
4	Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results in Physics, 2018, 8, 785-792.	4.1	84
5	Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition. PLoS ONE, 2015, 10, e0145332.	2.5	77
6	Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion. Results in Physics, 2018, 9, 290-296.	4.1	53
7	Three-dimensional flow of nanofluid with heat and mass flux boundary conditions. Chinese Journal of Physics, 2017, 55, 1495-1510.	3.9	52
8	Significance of Entropy Generation and the Coriolis Force on the Three-Dimensional Non-Darcy Flow of Ethylene-Glycol Conveying Carbon Nanotubes (SWCNTs and MWCNTs). Journal of Non-Equilibrium Thermodynamics, 2022, 47, 61-75.	4.2	52
9	Darcy–Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface. Communications in Theoretical Physics, 2017, 68, 387.	2.5	49
10	On model for flow of Burgers nanofluid with Cattaneo–Christov double diffusion. Chinese Journal of Physics, 2017, 55, 916-929.	3.9	44
11	An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface. Results in Physics, 2018, 9, 598-608.	4.1	44
12	Model and Comparative Study for Flow of Viscoelastic Nanofluids with Cattaneo-Christov Double Diffusion. PLoS ONE, 2017, 12, e0168824.	2.5	44
13	Significance of homogeneous–heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 2020, 139, 183-195.	3.6	42
14	Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions. Results in Physics, 2017, 7, 3100-3106.	4.1	42
15	On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface. Advanced Powder Technology, 2016, 27, 1992-2004.	4.1	40
16	Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1769-1779.	3.6	38
17	A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption. PLoS ONE, 2017, 12, e0172518.	2.5	36
18	Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. Journal of Thermal Analysis and Calorimetry, 2019, 136, 2087-2095.	3.6	30

ARSALAN AZIZ

#	Article	IF	CITATIONS
19	Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface. Results in Physics, 2017, 7, 4071-4078.	4.1	28
20	An optimal analysis for Darcy–Forchheimer 3D flow of nanofluid with convective condition and homogeneous–heterogeneous reactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2846-2855.	2.1	27
21	Analysis of entropy generation for MHD flow of third grade nanofluid over a nonlinear stretching surface embedded in a porous medium. Physica Scripta, 2019, 94, 125703.	2.5	27
22	Darcy-Forchheimer flow of nanofluid in a rotating frame. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2895-2915.	2.8	26
23	Active and passive controls of 3D nanofluid flow by a convectively heated nonlinear stretching surface. Physica Scripta, 2019, 94, 085704.	2.5	24
24	Numerical simulation for three-dimensional flow of Carreau nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	24
25	An optimal study for 3D rotating flow of Oldroyd-B nanofluid with convectively heated surface. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	22
26	Numerical treatment for Darcy–Forchheimer flow of nanofluid due to a rotating disk with convective heat and mass conditions. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2531-2550.	2.8	16
27	Influence of homogeneous–heterogeneous reactions in the three-dimensional rotating flow of a nanofluid subject to Darcy–Forchheimer porous medium: an optimal analysis. Physica Scripta, 2019, 94, 115708.	2.5	15
28	Analysis of entropy production and activation energy in hydromagnetic rotating flow of nanoliquid with velocity slip and convective conditions. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2561-2576.	3.6	14
29	Numerical simulation for Darcy-Forchheimer 3D rotating flow subject to binary chemical reaction and Arrhenius activation energy. Journal of Central South University, 2019, 26, 1250-1259.	3.0	12
30	Numerical simulation for 3D rotating flow of nanofluid with entropy generation. International Journal of Modelling and Simulation, 2023, 43, 101-122.	3.3	10
31	Fractional analysis of thin-film flow in the presence of thermal conductivity and variable viscosity. Waves in Random and Complex Media, 0, , 1-19.	2.7	10
32	A novel plasmonic waveguide for the dual-band transmission of spoof surface plasmon polaritons. European Physical Journal Plus, 2022, 137, .	2.6	7
33	The solution of twelfth order boundary value problems by the improved residual power series method: new approach. International Journal of Modelling and Simulation, 2023, 43, 64-74.	3.3	5
34	Lorentz force and Darcy-Forchheimer effects on the convective flow of non-Newtonian fluid with chemical aspects. Waves in Random and Complex Media, 0, , 1-15.	2.7	4
35	Numerical simulation of 3D swirling flow of Maxwell nanomaterial with a binary chemical mechanism and nonlinear thermal radiation effects. Waves in Random and Complex Media, 0, , 1-19.	2.7	4