Jussi M Hepojoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/334509/publications.pdf

Version: 2024-02-01

74 papers 6,830 citations

186265 28 h-index 91884 69 g-index

96 all docs 96 docs citations

96 times ranked 14522 citing authors

#	Article	IF	Citations
1	New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Archives of Disease in Childhood, 2022, 107, 180-185.	1.9	91
2	Short â€~1.2× Genome' Infectious Clone Initiates Kolmiovirid Replication in Boa constrictor Cells. Viruses, 2022, 14, 107.	3.3	2
3	Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity. Viruses, 2022, 14, 901.	3.3	4
4	Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia. Diagnostics, 2022, 12, 1725.	2.6	0
5	A 10-Minute "Mix and Read―Antibody Assay for SARS-CoV-2. Viruses, 2021, 13, 143.	3.3	16
6	Experimental Reptarenavirus Infection of <i>Boa constrictor</i> and <i>Python regius</i> . Journal of Virology, 2021, 95, .	3.4	8
7	Kinetics of Neutralizing Antibodies of COVID-19 Patients Tested Using Clinical D614G, B.1.1.7, and B 1.351 Isolates in Microneutralization Assays. Viruses, 2021, 13, 996.	3.3	14
8	A Generic, Scalable, and Rapid Time-Resolved Förster Resonance Energy Transfer-Based Assay for Antigen Detection—SARS-CoV-2 as a Proof of Concept. MBio, 2021, 12, .	4.1	40
9	COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nature Communications, 2021, 12, 3991.	12.8	241
10	Hantavirus infection-induced B cell activation elevates free light chains levels in circulation. PLoS Pathogens, 2021, 17, e1009843.	4.7	6
11	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
12	A subpopulation of arenavirus nucleoprotein localizes to mitochondria. Scientific Reports, 2021, 11, 21048.	3.3	3
13	Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Reports Medicine, 2020, 1, 100078.	6.5	160
14	Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370, 856-860.	12.6	1,441
15	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
16	A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine, 2020, 26, 1033-1036.	30.7	1,678
17	Serpentoviruses: More than Respiratory Pathogens. Journal of Virology, 2020, 94, .	3.4	10
18	Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To Generate Infectious Particles. MBio, 2020, 11, .	4.1	33

#	Article	IF	CITATIONS
19	Identification of Reptarenaviruses, Hartmaniviruses, and a Novel Chuvirus in Captive Native Brazilian Boa Constrictors with Boid Inclusion Body Disease. Journal of Virology, 2020, 94, .	3.4	21
20	Orthohantavirus Isolated in Reservoir Host Cells Displays Minimal Genetic Changes and Retains Wild-Type Infection Properties. Viruses, 2020, 12, 457.	3.3	12
21	Differences in Tissue and Species Tropism of Reptarenavirus Species Studied by Vesicular Stomatitis Virus Pseudotypes. Viruses, 2020, 12, 395.	3.3	8
22	Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Eurosurveillance, 2020, 25, .	7.0	226
23	Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein. ELife, 2020, 9, .	6.0	19
24	Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019. Eurosurveillance, 2019, 24, .	7.0	55
25	Immunoassay for serodiagnosis of Zika virus infection based on time-resolved Förster resonance energy transfer. PLoS ONE, 2019, 14, e0219474.	2.5	12
26	Antibody response in snakes with boid inclusion body disease. PLoS ONE, 2019, 14, e0221863.	2.5	20
27	Urine and Free Immunoglobulin Light Chains as Analytes for Serodiagnosis of Hantavirus Infection. Viruses, 2019, 11, 809.	3.3	8
28	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
29	Identification of a Novel Deltavirus in Boa Constrictors. MBio, 2019, 10, .	4.1	66
30	LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection. PLoS ONE, 2019, 14, e0225851.	2.5	10
31	ICTV Virus Taxonomy Profile: Arenaviridae. Journal of General Virology, 2019, 100, 1200-1201.	2.9	66
32	LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection., 2019, 14, e0225851.		0
33	LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection. , 2019, 14, e0225851.		0
34	LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection., 2019, 14, e0225851.		0
35	LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection., 2019, 14, e0225851.		0
36	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157

#	Article	IF	CITATIONS
37	Characterization of Haartman Institute snake virus-1 (HISV-1) and HISV-like virusesâ€"The representatives of genus Hartmanivirus, family Arenaviridae. PLoS Pathogens, 2018, 14, e1007415.	4.7	36
38	Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. Journal of Leukocyte Biology, 2018, 104, 777-786.	3.3	62
39	Structural Transitions of the Conserved and Metastable Hantaviral Glycoprotein Envelope. Journal of Virology, 2017, 91, .	3.4	38
40	Nidovirus-Associated Proliferative Pneumonia in the Green Tree Python (Morelia viridis). Journal of Virology, 2017, 91, .	3.4	41
41	Co-infecting Reptarenaviruses Can Be Vertically Transmitted in Boa Constrictor. PLoS Pathogens, 2017, 13, e1006179.	4.7	37
42	A Molecular-Level Account of the Antigenic Hantaviral Surface. Cell Reports, 2016, 15, 959-967.	6.4	57
43	Interferons Induce STAT1–Dependent Expression of Tissue Plasminogen Activator, a Pathogenicity Factor in Puumala Hantavirus Disease. Journal of Infectious Diseases, 2016, 213, 1632-1641.	4.0	24
44	Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands. Molecular and Cellular Proteomics, 2016, 15, 3270-3281.	3.8	8
45	Vaccinia virus-free rescue of fluorescent replication-defective vesicular stomatitis virus and pseudotyping with Puumala virus glycoproteins for use in neutralization tests. Journal of General Virology, 2016, 97, 1052-1059.	2.9	18
46	Mapping of human B-cell epitopes of Sindbis virus. Journal of General Virology, 2016, 97, 2243-2254.	2.9	2
47	Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor. PLoS ONE, 2016, 11, e0158417.	2.5	23
48	Preferred SH3 Domain Partners of ADAM Metalloproteases Include Shared and ADAM-Specific SH3 Interactions. PLoS ONE, 2015, 10, e0121301.	2.5	16
49	Arenavirus Coinfections Are Common in Snakes with Boid Inclusion Body Disease. Journal of Virology, 2015, 89, 8657-8660.	3.4	54
50	Rapid Homogeneous Immunoassay Based on Time-Resolved Förster Resonance Energy Transfer for Serodiagnosis of Acute Hantavirus Infection. Journal of Clinical Microbiology, 2015, 53, 636-640.	3.9	13
51	Competitive Homogeneous Immunoassay for Rapid Serodiagnosis of Hantavirus Disease. Journal of Clinical Microbiology, 2015, 53, 2292-2297.	3.9	11
52	Serological survey of Seewis virus antibodies in patients suspected for hantavirus infection in Finland; a cross-reaction between Puumala virus antiserum with Seewis virus N protein?. Journal of General Virology, 2015, 96, 1664-1675.	2.9	8
53	Replication of Boid Inclusion Body Disease-Associated Arenaviruses Is Temperature Sensitive in both Boid and Mammalian Cells. Journal of Virology, 2015, 89, 1119-1128.	3.4	44
54	A Protein L -Based Immunodiagnostic Approach Utilizing Time-Resolved Förster Resonance Energy Transfer. PLoS ONE, 2014, 9, e106432.	2.5	12

#	Article	IF	Citations
55	Analysis of Potato virus Y Coat Protein Epitopes Recognized by Three Commercial Monoclonal Antibodies. PLoS ONE, 2014, 9, e115766.	2.5	7
56	The fundamental role of endothelial cells in hantavirus pathogenesis. Frontiers in Microbiology, 2014, 5, 727.	3.5	66
57	Reply to "Updated Phylogenetic Analysis of Arenaviruses Detected in Boid Snakes". Journal of Virology, 2014, 88, 1401-1401.	3.4	14
58	Acute hantavirus infection induces galectin-3-binding protein. Journal of General Virology, 2014, 95, 2356-2364.	2.9	27
59	Identification of linear human B-cell epitopes of tick-borne encephalitis virus. Virology Journal, 2014, 11, 115.	3.4	11
60	Uncovering the mysteries of hantavirus infections. Nature Reviews Microbiology, 2013, 11, 539-550.	28.6	393
61	Cytoplasmic tails of bunyavirus Gn glycoproteins—Could they act as matrix protein surrogates?. Virology, 2013, 437, 73-80.	2.4	36
62	Isolation, Identification, and Characterization of Novel Arenaviruses, the Etiological Agents of Boid Inclusion Body Disease. Journal of Virology, 2013, 87, 10918-10935.	3.4	116
63	Time-Resolved FRET -Based Approach for Antibody Detection – A New Serodiagnostic Concept. PLoS ONE, 2013, 8, e62739.	2.5	21
64	Hantavirus structure – molecular interactions behind the scene. Journal of General Virology, 2012, 93, 1631-1644.	2.9	70
65	The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA. Virology, 2011, 418, 12-20.	2.4	24
66	Inactivation of hantaviruses by N-ethylmaleimide preserves virion integrity. Journal of General Virology, 2011, 92, 1189-1198.	2.9	9
67	Interactions and Oligomerization of Hantavirus Glycoproteins. Journal of Virology, 2010, 84, 227-242.	3.4	66
68	Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. Journal of General Virology, 2010, 91, 2341-2350.	2.9	56
69	Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 2010, 84, 4889-4897.	3.4	124
70	Degradation and aggresome formation of the Gn tail of the apathogenic Tula hantavirus. Journal of General Virology, 2009, 90, 2995-3001.	2.9	14
71	PXII-6 Degradation an aggresome formation of the Gn tail of the apathogenic tula hantavirus. Journal of Clinical Virology, 2009, 46, S55.	3.1	0
72	Hantaviruses and TNF-alpha act synergistically to induce ERK1/2 inactivation in Vero E6 cells. Virology Journal, 2008, 5, 110.	3.4	7

#	‡	Article	lF	CITATIONS
7	'3	Improvement of binding of Puumala virus neutralization site resembling peptide with a second-generation phage library. Protein Engineering, Design and Selection, 2003, 16, 443-450.	2.1	6
7	' 4	Persistent Reptarenavirus and Hartmanivirus Infection in Cultured Boid Cells. Microbiology Spectrum, 0, , .	3.0	3