
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3344902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In?. Annual Review of Marine Science, 2022, 14, 457-492.	11.6	38
2	A Numerical Study of Geomorphic and Oceanographic Controls on Wave-Driven Runup on Fringing Reefs with Shore-Normal Channels. Journal of Marine Science and Engineering, 2022, 10, 828.	2.6	2
3	Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes. Coastal Engineering, 2021, 163, 103796.	4.0	38
4	A semi-empirical method for computing storm surges on open coasts during tropical cyclones. Coastal Engineering, 2021, 165, 103839.	4.0	4
5	Modeling the hydrodynamics and morphodynamics of sandbar migration events. Coastal Engineering, 2021, 166, 103885.	4.0	35
6	A Clustering Approach for Predicting Dune Morphodynamic Response to Storms Using Typological Coastal Profiles: A Case Study at the Dutch Coast. Frontiers in Marine Science, 2021, 8, .	2.5	5
7	A Model-Derived Empirical Formulation for Wave Run-Up on Naturally Sloping Beaches. Journal of Marine Science and Engineering, 2021, 9, 1185.	2.6	4
8	Uncertainties in projections of sandy beach erosion due to sea level rise: an analysis at the European scale. Scientific Reports, 2020, 10, 11895.	3.3	44
9	The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts. Coastal Engineering, 2020, 160, 103704.	4.0	24
10	Delft Dashboard: a quick set-up tool for hydrodynamic models. Journal of Hydroinformatics, 2020, 22, 510-527.	2.4	21
11	The application of a radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta. Coastal Engineering, 2020, 159, 103716.	4.0	10
12	Steps to Develop Early Warning Systems and Future Scenarios of Storm Wave-Driven Flooding Along Coral Reef-Lined Coasts. Frontiers in Marine Science, 2020, 7, .	2.5	19
13	Uncertainties in coastal flood risk assessments in small island developing states. Natural Hazards and Earth System Sciences, 2020, 20, 2397-2414.	3.6	15
14	Morphodynamic modeling of the response of two barrier islands to Atlantic hurricane forcing. Estuarine, Coastal and Shelf Science, 2019, 229, 106404.	2.1	27
15	Impact of Coral Reef Mining Pits on Nearshore Hydrodynamics and Wave Runup During Extreme Wave Events. Journal of Geophysical Research: Oceans, 2019, 124, 2824-2841.	2.6	14
16	HyCReWW: A Hybrid Coral Reef Wave and Water level metamodel. Computers and Geosciences, 2019, 127, 85-90.	4.2	27
17	Physical and Numerical Modeling of Infragravity Wave Generation and Transformation on Coral Reef Platforms. Journal of Geophysical Research: Oceans, 2019, 124, 1410-1433.	2.6	28
18	Global distribution of nearshore slopes with implications for coastal retreat. Earth System Science Data, 2019, 11, 1515-1529.	9.9	55

#	Article	IF	CITATIONS
19	Infragravity waves: From driving mechanisms to impacts. Earth-Science Reviews, 2018, 177, 774-799.	9.1	165
20	Mechanisms of Waveâ€Driven Water Level Variability on Reefâ€Fringed Coastlines. Journal of Geophysical Research: Oceans, 2018, 123, 3811-3831.	2.6	55
21	Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Science Advances, 2018, 4, eaap9741.	10.3	279
22	Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments. Coastal Engineering, 2018, 137, 11-27.	4.0	55
23	Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coastal Engineering, 2018, 134, 2-9.	4.0	73
24	The effect of tides and storms on the sediment transport across a Dutch barrier island. Earth Surface Processes and Landforms, 2018, 43, 579-592.	2.5	14
25	Storm-induced risk assessment: Evaluation of two tools at the regional and hotspot scale. Coastal Engineering, 2018, 134, 241-253.	4.0	31
26	Developed barrier island adaptation strategies to hurricane forcing under rising sea levels. Climatic Change, 2017, 143, 173-184.	3.6	20
27	Standing infragravity waves over an alongshore irregular rocky bathymetry. Journal of Geophysical Research: Oceans, 2017, 122, 4868-4885.	2.6	19
28	Operational prediction of rip currents using numerical model and nearshore bathymetry from video images. AIP Conference Proceedings, 2017, , .	0.4	1
29	A Bayesianâ€Based System to Assess Waveâ€Driven Flooding Hazards on Coral Reefâ€Lined Coasts. Journal of Geophysical Research: Oceans, 2017, 122, 10099-10117.	2.6	68
30	Numerical Investigation of Developed and Undeveloped Barrier Island Response to Hurricane Sandy. , 2017, , .		0
31	RISC-KIT: Resilience-increasing Strategies for Coasts. E3S Web of Conferences, 2016, 7, 17001.	0.5	4
32	Review of Long Wave Dynamics over Reefs and into Ports with Implication for Port Operations. Journal of Marine Science and Engineering, 2016, 4, 12.	2.6	8
33	Identification and classification of very low frequency waves on a coral reef flat. Journal of Geophysical Research: Oceans, 2016, 121, 7560-7574.	2.6	38
34	Wave Setup over a Fringing Reef with Large Bottom Roughness. Journal of Physical Oceanography, 2016, 46, 2317-2333.	1.7	63
35	Predicting coastal hazards for sandy coasts with a Bayesian Network. Coastal Engineering, 2016, 118, 21-34.	4.0	80
36	Development of Generic Tools for Coastal Early Warning and Decision Support. E3S Web of Conferences, 2016, 7, 18017.	0.5	4

#	Article	IF	CITATIONS
37	Modeling the effect of waveâ€vegetation interaction on wave setup. Journal of Geophysical Research: Oceans, 2016, 121, 4341-4359.	2.6	67
38	Morphological response of a sandy barrier island with a buried seawall during Hurricane Sandy. Coastal Engineering, 2016, 110, 102-110.	4.0	47
39	The influence of coral reefs and climate change on waveâ€driven flooding of tropical coastlines. Geophysical Research Letters, 2015, 42, 6407-6415.	4.0	198
40	A validation of an operational wave and surge prediction system for the Dutch coast. Natural Hazards and Earth System Sciences, 2015, 15, 1231-1242.	3.6	20
41	HYDRODYNAMIC DRIVERS OF SEDIMENT TRANSPORT ACROSS A FRINGING REEF. Coastal Engineering Proceedings, 2015, 1, 37.	0.1	1
42	Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach. Coastal Engineering, 2015, 103, 1-14.	4.0	49
43	Spectral wave-driven sediment transport across a fringing reef. Coastal Engineering, 2015, 98, 78-94.	4.0	37
44	Dynamics of Wave Setup over a Steeply Sloping Fringing Reef. Journal of Physical Oceanography, 2015, 45, 3005-3023.	1.7	56
45	Rip currents under obliquely incident wind waves and tidal longshore currents. Coastal Engineering, 2014, 89, 106-119.	4.0	33
46	Nearshore bathymetry from video and the application to rip current predictions for the Dutch Coast. Journal of Coastal Research, 2014, 70, 354-359.	0.3	10
47	RISC-KIT: Resilience-Increasing Strategies for Coasts - toolKIT. Journal of Coastal Research, 2014, 70, 366-371.	0.3	28
48	Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Coastal Engineering, 2013, 73, 178-190.	4.0	143
49	Improvements in spectral wave modeling in tidal inlet seas. Journal of Geophysical Research, 2012, 117, .	3.3	22
50	The dynamics of infragravity wave transformation over a fringing reef. Journal of Geophysical Research, 2012, 117, .	3.3	160
51	Validation of an advective-deterministic approach to short wave breaking in a surf-beat model. Coastal Engineering, 2012, 60, 69-83.	4.0	24
52	Modelling gravel barrier profile response to combined waves and tides using XBeach: Laboratory and field results. Coastal Engineering, 2012, 63, 62-80.	4.0	57
53	LOW FREQUENCY WAVE RESONANCE IN FRINGING REEF ENVIRONMENTS. Coastal Engineering Proceedings, 2012, 1, 25.	0.1	6
54	ONLINE OPERATIONAL EARLY WARNING SYSTEM PROTOTYPES TO FORECAST COASTAL STORM IMPACTS (CEWS). Coastal Engineering Proceedings, 2012, 1, 45.	0.1	4

#	Article	IF	CITATIONS
55	Using 18th century storm-surge data from the Dutch Coast to improve the confidence in flood-risk estimates. Natural Hazards and Earth System Sciences, 2011, 11, 2791-2801.	3.6	24
56	A Boussinesq-type wave driver for a morphodynamical model to predict short-term morphology. Coastal Engineering, 2011, 58, 66-84.	4.0	19
57	Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coastal Engineering, 2010, 57, 668-683.	4.0	294
58	Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 2009, 56, 1133-1152.	4.0	1,033
59	$<\!\!b\!>\!82,<\!\!/b\!\!>$ MICORE: DUNE EROSION AND OVERWASH MODEL VALIDATION WITH DATA FROM NINE EUROPEAN FIELD SITES. , 2009, , .		18
60	Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coastal Engineering, 2008, 55, 1016-1027.	4.0	114
61	Numerical Simulation of Long-Period Waves and Ship Motions in Tomakomai Port, Japan. Coastal Engineering Journal, 2006, 48, 59-79.	1.9	33
62	Shoaling of subharmonic gravity waves. Journal of Geophysical Research, 2004, 109, .	3.3	167
63	Numerical modeling of infragravity wave response during DELILAH. Journal of Geophysical Research, 2003, 108, .	3.3	79
64	Long waves induced by short-wave groups over a sloping bottom. Journal of Geophysical Research, 2003, 108, .	3.3	128
65	GENERATION OF LONG WAVES BY SHORT WAVE GROUPS. , 2003, , .		4
66	THE ONR TEST BED FOR COASTAL AND OCEANIC WAVE MODELS. , 2003, , .		4
67	High-Quality Laboratory Wave Generation for Flumes and Basins. , 2002, , 1190.		5
68	Linear modeling of infragravity waves during Delilah. Journal of Geophysical Research, 2002, 107, 1-1.	3.3	42
69	Video Observation of Laboratory Waves. , 2002, , 13.		1
70	Observations of Long Waves on a Uniform Slope. , 2001, , 2192.		1
71	Morphodynamic Response to Wave Group Forcing. , 2001, , 3218.		3
72	Nonlinear and 3D effects in leaky infragravity waves. Coastal Engineering, 2000, 41, 467-496.	4.0	29

#	Article	IF	CITATIONS
73	Absorbing-Generating Boundary Condition for Shallow Water Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 1997, 123, 303-313.	1.2	58