
Wen-Chung Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3344684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clinical Cancer Research, 2015, 21, 4062-4072.	7.0	573
2	A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood, 2011, 118, 1255-1263.	1.4	496
3	Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood, 2016, 127, 2980-2990.	1.4	264
4	Regional Delivery of Chimeric Antigen Receptor–Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain. Clinical Cancer Research, 2018, 24, 95-105.	7.0	220
5	Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Molecular Therapy, 2018, 26, 31-44.	8.2	217
6	Chimeric Antigen Receptors With Mutated IgG4 Fc Spacer Avoid Fc Receptor Binding and Improve T Cell Persistence and Antitumor Efficacy. Molecular Therapy, 2015, 23, 757-768.	8.2	169
7	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	150
8	Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science Translational Medicine, 2020, 12, .	12.4	140
9	Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor–Redirected T Cells Against Multiple Myeloma. Clinical Cancer Research, 2018, 24, 106-119.	7.0	136
10	Phenotypic and Functional Attributes of Lentivirus-modified CD19-specific Human CD8+ Central Memory T Cells Manufactured at Clinical Scale. Journal of Immunotherapy, 2012, 35, 689-701.	2.4	128
11	Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncolmmunology, 2018, 7, e1380764.	4.6	111
12	Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Frontiers in Immunology, 2018, 9, 2268.	4.8	80
13	Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. Journal of Immunological Methods, 2005, 297, 39-52.	1.4	57
14	3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR TÂcells. Cell Stem Cell, 2022, 29, 515-527.e8.	11.1	57
15	CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clinical Cancer Research, 2015, 21, 2993-3002.	7.0	52
16	Pre-conditioning modifies the TME to enhance solid tumor CAR TÂcell efficacy and endogenous protective immunity. Molecular Therapy, 2021, 29, 2335-2349.	8.2	51
17	L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice. PLoS ONE, 2016, 11, e0146885.	2.5	34
18	Comparison of naÃ ⁻ ve and central memory derived CD8 ⁺ effector cell engraftment fitness and function following adoptive transfer. Oncolmmunology, 2016, 5, e1072671.	4.6	25

Wen-Chung Chang

#	Article	IF	CITATIONS
19	The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma. Cancer Immunology Research, 2021, 9, 75-88.	3.4	24
20	CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia, 2022, 36, 1015-1024.	7.2	15
21	Antitumor efficacy of BAFF-R targeting CAR T cells manufactured under clinic-ready conditions. Cancer Immunology, Immunotherapy, 2020, 69, 2139-2145.	4.2	14
22	CD19-CAR Therapy Using Naive/Memory or Central Memory T Cells Integrated into the Autologous Stem Cell Transplant Regimen for Patients with B-NHL. Blood, 2018, 132, 610-610.	1.4	9
23	Pre-clinical data supporting immunotherapy for HIV using CMV-HIV-specific CAR TÂcells with CMV vaccine. Molecular Therapy - Methods and Clinical Development, 2022, 25, 344-359.	4.1	6
24	Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor Redirected-T Cells Against Multiple Myeloma. Blood, 2016, 128, 812-812.	1.4	4
25	Phase I Studies of Cellular Immunotherapy Using Central Memory Derived-CD19-Specific T Cells Following Autologous Stem Cell Transplantation for Patients with High-Risk Intermediate Grade B-Lineage Non-Hodgkin Lymphoma. Blood, 2015, 126, 930-930.	1.4	2
26	CS-1 Re-Directed Central Memory T Cell Therapy for Multiple Myeloma. Blood, 2014, 124, 1114-1114.	1.4	1
27	Ex Vivo AKT Inhibition Promotes the Generation of Potent CD19CAR T Cells for Adoptive Immunotherapy. Blood, 2015, 126, 3086-3086.	1.4	0