David Kokel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3344212/publications.pdf

Version: 2024-02-01

23 papers

2,719 citations

361388 20 h-index 642715 23 g-index

27 all docs

27 docs citations

times ranked

27

3046 citing authors

#	Article	IF	CITATIONS
1	Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science, 2010, 327, 348-351.	12.6	681
2	Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology, 2010, 6, 231-237.	8.0	482
3	Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature, 2005, 437, 831-837.	27.8	207
4	Live imaging of apoptotic cells in zebrafish. FASEB Journal, 2010, 24, 4336-4342.	0.5	129
5	Caenorhabditis elegans drp-1 and fis-2 Regulate Distinct Cell-Death Execution Pathways Downstream of ced-3 and Independent of ced-9. Molecular Cell, 2008, 31, 586-597.	9.7	128
6	Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nature Chemical Biology, 2016, 12, 559-566.	8.0	124
7	Chemical informatics and target identification in a zebrafish phenotypic screen. Nature Chemical Biology, 2012, 8, 144-146.	8.0	113
8	Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Briefings in Functional Genomics & Proteomics, 2008, 7, 483-490.	3.8	107
9	Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain. Journal of Neuroscience, 2013, 33, 3834-3843.	3.6	98
10	Photochemical activation of TRPA1 channels in neurons and animals. Nature Chemical Biology, 2013, 9, 257-263.	8.0	97
11	Structural, Biochemical, and Functional Analyses of CED-9 Recognition by the Proapoptotic Proteins EGL-1 and CED-4. Molecular Cell, 2004, 15, 999-1006.	9.7	92
12	Using the Zebrafish Photomotor Response for Psychotropic Drug Screening. Methods in Cell Biology, 2011, 105, 517-524.	1.1	81
13	Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Frontiers in Pharmacology, 2014, 5, 153.	3.5	66
14	Apoptotic Cells Are Cleared by Directional Migration and elmo1- Dependent Macrophage Engulfment. Current Biology, 2012, 22, 830-836.	3.9	63
15	Identification of Psychoplastogenic <i>N</i> , <i>N</i> -Dimethylaminoisotryptamine (isoDMT) Analogues through Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2020, 63, 1142-1155.	6.4	49
16	Behavioral barcoding in the cloud: embracing data-intensive digital phenotyping in neuropharmacology. Trends in Biotechnology, 2012, 30, 421-425.	9.3	38
17	\ddot{l}_1 receptor ligands control a switch between passive and active threat responses. Nature Chemical Biology, 2016, 12, 552-558.	8.0	37
18	The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nature Chemical Biology, 2006, 2, 338-345.	8.0	31

DAVID KOKEL

#	Article	IF	CITATION
19	Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chemical Biology, 2016, 11, 842-849.	3.4	28
20	Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications, 2019, 10, 4078.	12.8	27
21	Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nature Communications, 2021, 12, 5284.	12.8	13
22	A Class of Benzenoid Chemicals Suppresses Apoptosis in C. elegans. ChemBioChem, 2006, 7, 2010-2015.	2.6	11
23	<i>cables1</i> is required for embryonic neural development: molecular, cellular, and behavioral evidence from the zebrafish. Molecular Reproduction and Development, 2011, 78, 22-32.	2.0	9