Nobuhiko Kamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3343866/publications.pdf

Version: 2024-02-01

115 papers 16,318 citations

25034 57 h-index 24258 110 g-index

120 all docs

120 docs citations

times ranked

120

21973 citing authors

#	Article	IF	Citations
1	Contribution of the Gut Microbiota to Intestinal Fibrosis in Crohn's Disease. Frontiers in Medicine, 2022, 9, 826240.	2.6	4
2	Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontology 2000, 2022, 89, 142-153.	13.4	19
3	Inflammatory bowel disease and carcinogenesis. Cancer and Metastasis Reviews, 2022, 41, 301-316.	5.9	24
4	Maternal gut microbiome–induced IgG regulates neonatal gut microbiome and immunity. Science Immunology, 2022, 7, .	11.9	18
5	Untangling the oral–gut axis in the pathogenesis of intestinal inflammation. International Immunology, 2022, 34, 485-490.	4.0	11
6	Pathogenic associations between oral and gastrointestinal diseases. Trends in Molecular Medicine, 2022, 28, 1030-1039.	6.7	16
7	The Butyrate-Producing Bacterium <i>Clostridium butyricum</i> Suppresses <i>Clostridioides difficile</i> Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. Journal of Immunology, 2021, 206, 1576-1585.	0.8	47
8	Diet–Microbiota Interactions in Inflammatory Bowel Disease. Nutrients, 2021, 13, 1533.	4.1	46
9	DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. Journal of Clinical Investigation, 2021, 131, .	8.2	35
10	Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nature Biomedical Engineering, 2021, 5, 1377-1388.	22.5	95
11	TNFRSF13B polymorphisms counteract microbial adaptation to natural IgA. JCI Insight, 2021, 6, .	5.0	1
12	The pathogenic oral–gut–liver axis: new understandings and clinical implications. Expert Review of Clinical Immunology, 2021, 17, 727-736.	3.0	18
13	Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Advanced Drug Delivery Reviews, 2021, 179, 114021.	13.7	44
14	Interaction between the inflammasome and commensal microorganisms in gastrointestinal health and disease. EMBO Molecular Medicine, 2021, 13, e13452.	6.9	22
15	A potential pathogenic association between periodontal disease and Crohn's disease. JCl Insight, 2021, 6, .	5.0	35
16	Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nature Materials, 2020, 19, 118-126.	27.5	370
17	Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nature Microbiology, 2020, 5, 116-125.	13.3	93
18	Lipopolysaccharide O structure of adherent and invasive Escherichia coli regulates intestinal inflammation via complement C3. PLoS Pathogens, 2020, 16, e1008928.	4.7	12

#	Article	IF	CITATIONS
19	Microbial adaptation to the healthy and inflamed gut environments. Gut Microbes, 2020, 12, 1857505.	9.8	29
20	The Bacterial Connection between the Oral Cavity and the Gut Diseases. Journal of Dental Research, 2020, 99, 1021-1029.	5.2	162
21	The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell, 2020, 182, 447-462.e14.	28.9	314
22	Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nature Medicine, 2020, 26, 608-617.	30.7	136
23	Aim2-mediated/IFN-β–independent regulation of gastric metaplastic lesions via CD8+ T cells. JCI Insight, 2020, 5, .	5.0	26
24	CD4+ Tissue-resident Memory T Cells Expand and Are a Major Source of Mucosal Tumour Necrosis Factor α in Active Crohn's Disease. Journal of Crohn's and Colitis, 2019, 13, 905-915.	1.3	38
25	Citrobacter rodentium Induces Tissue-Resident Memory CD4 $<$ sup $>+<$ /sup $>$ T Cells. Infection and Immunity, 2019, 87, .	2.2	14
26	A specific gene-microbe interaction drives the development of Crohn's disease–like colitis in mice. Science Immunology, 2019, 4, .	11.9	102
27	Fecal microbiota transplantation prevents <i>Candida albicans</i> from colonizing the gastrointestinal tract. Microbiology and Immunology, 2019, 63, 155-163.	1.4	22
28	IL-10 produced by macrophages regulates epithelial integrity in the small intestine. Scientific Reports, 2019, 9, 1223.	3.3	72
29	Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunology, 2019, 12, 632-643.	6.0	57
30	Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nature Microbiology, 2019, 4, 492-503.	13.3	270
31	The regenerating family member 3 \hat{l}^2 instigates IL-17A-mediated neutrophil recruitment downstream of NOD1/2 signalling for controlling colonisation resistance independently of microbiota community structure. Gut, 2019, 68, 1190-1199.	12.1	14
32	Regional Control of Regulatory Immune Cells in the Intestine. Current Pathobiology Reports, 2018, 6, 29-34.	3.4	6
33	Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice. Biochemical Pharmacology, 2018, 148, 163-173.	4.4	23
34	Indoleamine 2,3-Dioxygenase 1, Increased in Human Gastric Pre-Neoplasia, Promotes Inflammation and Metaplasia in Mice and Is Associated With Type II Hypersensitivity/Autoimmunity. Gastroenterology, 2018, 154, 140-153.e17.	1.3	27
35	Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host and Microbe, 2018, 24, 833-846.e6.	11.0	277
36	The Role of Dietary Nutrients in Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 3183.	4.8	120

3

#	Article	IF	Citations
37	Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget, 2018, 9, 9925-9939.	1.8	98
38	Regional control of regulatory immune cells in the intestine. Current Pathobiology Reports, 2018, 6, 29-34.	3.4	2
39	IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Science Immunology, 2017, 2, .	11.9	50
40	Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice. Cell Reports, 2017, 21, 1215-1226.	6.4	67
41	Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9608-E9617.	7.1	77
42	Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Reports, 2017, 20, 1513-1524.	6.4	93
43	Mesenchymal Cell–Specific MyD88 Signaling Promotes Systemic Dissemination of <i>Salmonella Typhimurium</i> via Inflammatory Monocytes. Journal of Immunology, 2017, 199, 1362-1371.	0.8	6
44	Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Network, 2017, 17, 1.	3.6	147
45	Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis. BMC Gastroenterology, 2017, 17, 136.	2.0	46
46	The Innate Immune System: A Trigger for Many Chronic Inflammatory Intestinal Diseases. Inflammatory Intestinal Diseases, 2016, 1, 70-77.	1.9	13
47	Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 2016, 14, 127.	2.6	108
48	Functional Characterization of Inflammatory Bowel Disease–Associated Gut Dysbiosis in Gnotobiotic Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 468-481.	4.5	189
49	Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nature Medicine, 2016, 22, 524-530.	30.7	94
50	Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Scientific Reports, 2016, 6, 27634.	3.3	44
51	A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 2016, 167, 1339-1353.e21.	28.9	1,882
52	Su1881 Dietary Serine Controls the Competition Between Pathogenic and Commensal E. coli During Intestinal Inflammation. Gastroenterology, 2016, 150, S578.	1.3	0
53	Su1898 Inflammatory Bowel Disease-Associated Gut Dysbiosis Impacts the Host Physiology and Colitis in Gnotobiotic Mice. Gastroenterology, 2016, 150, S582-S583.	1.3	0
54	Su1889 Dietary Antigens Regulate Homeostasis of IL-10-Producing Lamina Propria Macrophages in the Small Intestine. Gastroenterology, 2016, 150, S580.	1.3	0

#	Article	lF	CITATIONS
55	373 Indoleamine-2,3-Dioxygenase-1 (IDO1) Regulates B Cell Maturation and Is Critical for Gastric Pre-Neoplasia. Gastroenterology, 2016, 150, S83.	1.3	O
56	Regulation of virulence: the rise and fall of gastrointestinal pathogens. Journal of Gastroenterology, 2016, 51, 195-205.	5.1	53
57	P-192â€∫Unraveling the Functional Role of Dysbiosis in CrohnÊ⅓s Disease. Inflammatory Bowel Diseases, 2016, 22, S67.	1.9	1
58	Increased Expression of DUOX2 Is an Epithelial Response toÂMucosal Dysbiosis Required for Immune Homeostasis inÂMouse Intestine. Gastroenterology, 2015, 149, 1849-1859.	1.3	120
59	Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host and Microbe, 2015, 17, 617-627.	11.0	132
60	Distinct Commensals Induce Interleukin- $1\hat{l}^2$ via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity, 2015, 42, 744-755.	14.3	259
61	Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 2015, 163, 367-380.	28.9	846
62	Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells. Nature Communications, 2015, 6, 8010.	12.8	86
63	Macrophages and Dendritic Cells Emerge in the Liver during Intestinal Inflammation and Predispose the Liver to Inflammation. PLoS ONE, 2014, 9, e84619.	2.5	18
64	Cross-talk Between RORγt+ Innate Lymphoid Cells and Intestinal Macrophages Induces Mucosal IL-22 Production in Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1426-1434.	1.9	53
65	Regulation of the Immune System by the Resident Intestinal Bacteria. Gastroenterology, 2014, 146, 1477-1488.	1.3	220
66	Interleukin-22 Regulates the Complement System to Promote Resistance against Pathobionts after Pathogen-Induced Intestinal Damage. Immunity, 2014, 41, 620-632.	14.3	124
67	Tryptophan Catabolism Restricts IFN-γ–Expressing Neutrophils and <i>Clostridium difficile</i> Immunopathology. Journal of Immunology, 2014, 193, 807-816.	0.8	55
68	TACI deficiency enhances antibody avidity and clearance of an intestinal pathogen. Journal of Clinical Investigation, 2014, 124, 4857-4866.	8.2	40
69	The Tuning of the Gut Nervous System by Commensal Microbiota. Gastroenterology, 2013, 145, 1193-1196.	1.3	7
70	Role of the Gut Microbiota in the Development and Function of Lymphoid Cells. Journal of Immunology, 2013, 190, 1389-1395.	0.8	137
71	Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 2013, 13, 321-335.	22.7	1,771
72	Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 2013, 14, 685-690.	14.5	1,217

#	Article	IF	CITATIONS
73	A Single Strain of Clostridium butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host and Microbe, 2013, 13, 711-722.	11.0	241
74	Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatology Research, 2013, 43, 658-669.	3.4	46
75	<scp>TGR</scp> 5 signalling inhibits the production of proâ€inflammatory cytokines by ⟨i⟩in vitro⟨/i⟩ differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology, 2013, 139, 19-29.	4.4	156
76	Establishment of Novel Prediction System of Intestinal Absorption in Humans Using Human Intestinal Tissues. Journal of Pharmaceutical Sciences, 2013, 102, 2564-2571.	3.3	29
77	Multiple effects of dendritic cell depletion on murine norovirus infection. Journal of General Virology, 2013, 94, 1761-1768.	2.9	23
78	Clinical Strategies for the Blockade of IL-18 in Inflammatory Bowel Diseases. Current Drug Targets, 2013, 14, 1392-1399.	2.1	31
79	Microbiota-induced IL- $\hat{1}^2$, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. Journal of Experimental Medicine, 2012, 209, 251-258.	8.5	289
80	Protective Role of Commensals against <i>Clostridium difficile</i> Infection via an IL-1β–Mediated Positive-Feedback Loop. Journal of Immunology, 2012, 189, 3085-3091.	0.8	110
81	NLRC4-driven production of IL- $1\hat{1}^2$ discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunology, 2012, 13, 449-456.	14.5	347
82	Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota. Science, 2012, 336, 1325-1329.	12.6	546
83	A complex microworld in the gut: Harnessing pathogen-commensal relations. Nature Medicine, 2012, 18, 1190-1191.	30.7	25
84	Both exogenous commensal and endogenous self antigens stimulate T cell proliferation under lymphopenic conditions. Cellular Immunology, 2012, 272, 117-123.	3.0	14
85	Bile acids induce monocyte differentiation toward interleukinâ€12 hypoâ€producing dendritic cells via a TGR5â€dependent pathway. Immunology, 2012, 136, 153-162.	4.4	116
86	Nfil3 is a Regulator of IL-12 P40 in Macrophages and Mucosal Immunity. Gastroenterology, 2011, 140, S-109-S-110.	1.3	1
87	The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends in Immunology, 2011, 32, 73-79.	6.8	66
88	The activation of the NLRC4 inflammasome by pathogenic bacteria breaks intestinal phagocytic cells anergy and promotes host defense. Inflammatory Bowel Diseases, 2011, 17, S67.	1.9	0
89	Intracellular bacteria recognition contributes to maximal interleukin (IL)-12 production by IL-10-deficient macrophages. Clinical and Experimental Immunology, 2011, 164, 137-144.	2.6	7
90	The Nod2 Sensor Promotes Intestinal Pathogen Eradication via the Chemokine CCL2-Dependent Recruitment of Inflammatory Monocytes. Immunity, 2011, 34, 769-780.	14.3	215

#	Article	IF	CITATIONS
91	NFIL3 Is a Regulator of IL-12 p40 in Macrophages and Mucosal Immunity. Journal of Immunology, 2011, 186, 4649-4655.	0.8	101
92	Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of $\langle i \rangle$ Clostridium difficile $\langle j \rangle$ and Induces Neutrophil Recruitment and Protection against the Pathogen. Journal of Immunology, 2011, 186, 4872-4880.	0.8	155
93	TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn $\hat{\mathbb{E}}_{4}$ s disease. Inflammatory Bowel Diseases, 2010, 16, 568-575.	1.9	105
94	Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis. European Journal of Immunology, 2010, 40, 2409-2422.	2.9	41
95	Monocyte Chemoattractant Protein-1 Contributes to Gut Homeostasis and Intestinal Inflammation by Composition of IL-10–Producing Regulatory Macrophage Subset. Journal of Immunology, 2010, 184, 2671-2676.	0.8	128
96	Imbalance of NKp44+NKp46â^ and NKp44â^ NKp46+ Natural Killer Cells in the Intestinal Mucosa of Patients With Crohn's Disease. Gastroenterology, 2010, 139, 882-892.e3.	1.3	214
97	Human CD14+ Macrophages in Intestinal Lamina Propria Exhibit Potent Antigen-Presenting Ability. Journal of Immunology, 2009, 183, 1724-1731.	0.8	108
98	Retinoic acid contributes to the induction of IL-12-hypoproducing dendritic cells. Inflammatory Bowel Diseases, 2009, 15, 1548-1556.	1.9	43
99	Dietary Histidine Ameliorates Murine Colitis by Inhibition of Proinflammatory Cytokine Production From Macrophages. Gastroenterology, 2009, 136, 564-574.e2.	1.3	139
100	Th1/Th17 Immune Response Is Induced by Mesenteric Lymph Node Dendritic Cells in Crohn's Disease. Gastroenterology, 2009, 137, 1736-1745.	1.3	211
101	Homeostatic (IL-7) and effector (IL-17) cytokines as distinct but complementary target for an optimal therapeutic strategy in inflammatory bowel disease. Current Opinion in Gastroenterology, 2009, 25, 306-313.	2.3	28
102	Tetomilast suppressed production of proinflammatory cytokines from human monocytes and ameliorated chronic colitis in IL-10-deficient mice. Inflammatory Bowel Diseases, 2008, 14, 1483-1490.	1.9	18
103	Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology, 2008, 298, 463-472.	3.6	281
104	IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 2008, 57, 1682-1689.	12.1	470
105	Nonpathogenic <i>Escherichia coli</i> Strain Nissle 1917 Inhibits Signal Transduction in Intestinal Epithelial Cells. Infection and Immunity, 2008, 76, 214-220.	2.2	57
106	Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN- \hat{l}^3 axis. Journal of Clinical Investigation, 2008, 118, 2269-80.	8.2	559
107	Lamina Propria c-kit+ Immune Precursors Reside in Human Adult Intestine and Differentiate Into Natural Killer Cells. Gastroenterology, 2007, 133, 559-573.	1.3	77
108	Exclusive increase of CX3CR1+CD28â^'CD4+ T cells in inflammatory bowel disease and their recruitment as intraepithelial lymphocytes. Inflammatory Bowel Diseases, 2007, 13, 837-846.	1.9	75

7

#	Article	IF	CITATIONS
109	Inhibition of neutrophil elastase prevents the development of murine dextran sulfate sodium-induced colitis. Journal of Gastroenterology, 2006, 41, 318-324.	5.1	67
110	Nonpathogenic Escherichia coli Strain Nissle1917 Prevents Murine Acute and Chronic Colitis. Inflammatory Bowel Diseases, 2005, 11, 455-463.	1.9	62
111	A novel apoptosis-inducing monoclonal antibody (anti-LHK) against a cell surface antigen on colon cancer cells. Journal of Gastroenterology, 2005, 40, 945-955.	5.1	3
112	Abnormally Differentiated Subsets of Intestinal Macrophage Play a Key Role in Th1-Dominant Chronic Colitis through Excess Production of IL-12 and IL-23 in Response to Bacteria. Journal of Immunology, 2005, 175, 6900-6908.	0.8	192
113	Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. Blood, 1996, 87, 4949-4958.	1.4	125
114	Loss of the cyclin-dependent kinase 4-inhibitor (p16; MTS1) gene is frequent in and highly specific to lymphoid tumors in primary human hematopoietic malignancies. Blood, 1995, 86, 1548-1556.	1.4	116
115	Role of the gut microbiota in immunity and inflammatory disease. , 0, .		1