Verena Jantsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3343056/publications.pdf

Version: 2024-02-01

218677 233421 2,359 46 26 45 citations h-index g-index papers 54 54 54 1956 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meiotic Chromosome Homology Search Involves Modifications of the Nuclear Envelope Protein Matefin/SUN-1. Cell, 2009, 139, 920-933.	28.9	181
2	The Nuclear Envelope Protein Matefin/SUN-1 Is Required for Homologous Pairing in C. elegans Meiosis. Developmental Cell, 2007, 12, 873-885.	7.0	166
3	ZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C. elegans. PLoS Genetics, 2008, 4, e1000235.	3.5	129
4	Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. Journal of Biomedical Optics, 2012, 17, 1.	2.6	117
5	Targeted Gene Knockout Reveals a Role in Meiotic Recombination for ZHP-3, a Zip3-Related Protein in Caenorhabditis elegans. Molecular and Cellular Biology, 2004, 24, 7998-8006.	2.3	110
6	Polo Kinases Establish Links between Meiotic Chromosomes and Cytoskeletal Forces Essential for Homolog Pairing. Developmental Cell, 2011, 21, 948-958.	7.0	104
7	A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. EMBO Journal, 2007, 26, 5071-5082.	7.8	94
8	Meiosis. WormBook, 2017, 2017, 1-43.	5.3	92
9	Matefin/SUN-1 Phosphorylation Is Part of a Surveillance Mechanism to Coordinate Chromosome Synapsis and Recombination with Meiotic Progression and Chromosome Movement. PLoS Genetics, 2013, 9, e1003335.	3.5	90
10	Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases. PLoS Genetics, 2013, 9, e1003591.	3.5	88
11	SUN-domain and KASH-domain proteins during development, meiosis and disease. Cellular and Molecular Life Sciences, 2009, 66, 1518-1533.	5.4	87
12	Biosynthesis of Truncated N-Linked Oligosaccharides Results from Non-orthologous Hexosaminidase-mediated Mechanisms in Nematodes, Plants, and Insects. Journal of Biological Chemistry, 2007, 282, 27825-27840.	3.4	84
13	A <i>Caenorhabditis elegans</i> RNA-Directed RNA Polymerase in Sperm Development and Endogenous RNA Interference. Genetics, 2009, 183, 1297-1314.	2.9	80
14	Molecular Basis of Anti-horseradish Peroxidase Staining in Caenorhabditis elegans. Journal of Biological Chemistry, 2004, 279, 49588-49598.	3.4	74
15	Leptotene/Zygotene Chromosome Movement Via the SUN/KASH Protein Bridge in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001219.	3.5	72
16	A Surveillance System Ensures Crossover Formation in C.Âelegans. Current Biology, 2016, 26, 2873-2884.	3.9	56
17	Chromosome movement in meiosis I prophase of Caenorhabditis elegans. Chromosoma, 2014, 123, 15-24.	2.2	48
18	The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Experimental Cell Research, 2003, 289, 245-255.	2.6	46

#	Article	IF	CITATIONS
19	A Deletion in the Golgi α-Mannosidase II Gene of Caenorhabditis elegans Results in Unexpected Non-wild-type N-Glycan Structures. Journal of Biological Chemistry, 2006, 281, 28265-28277.	3.4	44
20	BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genetics, 2018, 14, e1007653.	3.5	44
21	Galactosylated Fucose Epitopes in Nematodes. Journal of Biological Chemistry, 2012, 287, 28276-28290.	3.4	43
22	Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase. Developmental Cell, 2018, 45, 212-225.e7.	7.0	40
23	Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in <i>Caenorhabditis elegans</i>	2.9	38
24	LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nature Communications, 2018, 9, 728.	12.8	37
25	Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma, 2019, 128, 317-330.	2.2	37
26	 i>Caenorhabditis elegans prom-1 $$ li>Is Required for Meiotic Prophase Progression and Homologous Chromosome Pairing. Molecular Biology of the Cell, 2007, 18, 4911-4920.	2.1	34
27	Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2111-2125.	3.8	32
28	Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance. PLoS Biology, 2016, 14, e1002412.	5.6	32
29	The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics, and use for genotype classification. Plant Molecular Biology, 1999, 39, 797-807.	3.9	28
30	"The nuclear envelope, a meiotic jack-of-all-trades". Current Opinion in Cell Biology, 2020, 64, 34-42.	5.4	25
31	Mutations in <i>Caenorhabditis elegans him-19</i> Show Meiotic Defects That Worsen with Age. Molecular Biology of the Cell, 2010, 21, 885-896.	2.1	24
32	C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genetics, 2018, 14, e1007776.	3.5	24
33	Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS Journal, 2006, 273, 2244-2256.	4.7	22
34	The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007453.	3.5	22
35	PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. ELife, 2020, 9, .	6.0	20
36	A New Thermosensitive smc-3 Allele Reveals Involvement of Cohesin in Homologous Recombination in C. elegans. PLoS ONE, 2011, 6, e24799.	2.5	17

#	Article	IF	CITATIONS
37	Transgene-mediated cosuppression and RNA interference enhance germ-line apoptosis in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3440-3445.	7.1	17
38	Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nature Communications, 2020, 11, 4869.	12.8	16
39	Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line. Genetics, 2016, 203, 733-748.	2.9	8
40	DNA topoisomerase 3 is required for efficient germ cell quality control. Journal of Cell Biology, 2021, 220, .	5.2	8
41	Meiotic chromosome movement: what's lamin got to do with it?. Nucleus, 2019, 10, 1-6.	2.2	6
42	Caenorhabditis elegans RMI2 functional homolog-2 (RMIF-2) and RMI1 (RMH-1) have both overlapping and distinct meiotic functions within the BTR complex. PLoS Genetics, 2021, 17, e1009663.	3.5	5
43	Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. Science Advances, 2022, 8, eabl8861.	10.3	5
44	UNC-84: "LINC-ing―chromosome movement and double strand break repair. Journal of Cell Biology, 2016, 215, 753-756.	5.2	3
45	Putting organelles in their place. ELife, 2021, 10, .	6.0	1
46	Of funding and finches. Genome Biology, 2019, 20, 176.	8.8	0