J Hunter Waite, Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.	3.7	5
2	Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. Astrobiology, 2022, 22, 143-157.	3.0	11
3	Conductivities of Titan's Dusty Ionosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
4	MEMS GC Column Performance for Analyzing Organics and Biological Molecules for Future Landed Planetary Missions. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	5
5	Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology, 2022, 22, 685-712.	3.0	21
6	Juno Plasma Wave Observations at Ganymede. Geophysical Research Letters, 2022, 49, .	4.0	13
7	Jupiter's Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planetary Science Journal, 2022, 3, 159.	3.6	11
8	Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno. Geophysical Research Letters, 2022, 49, .	4.0	16
9	Oxidation processes diversify the metabolic menu on Enceladus. Icarus, 2021, 364, 114248.	2.5	29
10	Heavy Positive Ion Groups in Titan's Ionosphere from Cassini Plasma Spectrometer IBS Observations. Planetary Science Journal, 2021, 2, 26.	3.6	5
11	Constraining the Positive Ion Composition in Saturn's Lower Ionosphere with the Effective Recombination Coefficient. Planetary Science Journal, 2021, 2, 39.	3.6	4
12	The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life. Planetary Science Journal, 2021, 2, 77.	3.6	74
13	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	3.6	40
14	Global Spatial Distribution of Dipolarization Fronts in the Saturn's Magnetosphere: Cassini Observations. Geophysical Research Letters, 2021, 48, e2021GL092701.	4.0	11
15	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
16	A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft. Astrophysical Journal Letters, 2021, 919, L25.	8.3	3
17	Jupiter's Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries. Geophysical Research Letters, 2021, 48, e2021GL095756.	4.0	11
18	Evidence for Multiple Ferrel‣ike Cells on Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095651.	4.0	18

#	Article	IF	CITATIONS
19	Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science, 2021, 374, 968-972.	12.6	23
20	Experimental Coupling of a MEMS Gas Chromatograph and a Mass Spectrometer for Organic Analysis in Space Environments. ACS Earth and Space Chemistry, 2020, 4, 1718-1729.	2.7	8
21	Saturn's near-equatorial ionospheric conductivities from in situ measurements. Scientific Reports, 2020, 10, 7932.	3.3	10
22	Observations and Electron Density Retrievals of Jupiter's Discrete Auroral Arcs Using the Juno Microwave Radiometer. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006293.	3.6	4
23	Fast and Slow Water Ion Populations in the Enceladus Plume. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027591.	2.4	2
24	The Carbonate Geochemistry of Enceladus' Ocean. Geophysical Research Letters, 2020, 47, e2019GL085885.	4.0	64
25	Spatial Variations of Low-mass Negative Ions in Titan's Upper Atmosphere. Planetary Science Journal, 2020, 1, 50.	3.6	3
26	Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 489, 594-607.	4.4	112
27	Heavy negative ion growth in Titan's polar winter. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2254-2261.	4.4	13
28	The Role of Clathrate Formation in Europa's Ocean Composition. Astrophysical Journal, 2019, 885, 14.	4.5	15
29	Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini. Astrophysical Journal Letters, 2019, 884, L14.	8.3	4
30	Contributions from Accreted Organics to Titan's Atmosphere: New Insights from Cometary and Chondritic Data. Astrophysical Journal, 2019, 871, 59.	4.5	39
31	Plasma Transport in Saturn's Lowâ€Latitude Ionosphere: Cassini Data. Journal of Geophysical Research: Space Physics, 2019, 124, 4881-4888.	2.4	3
32	Saturn's Dusty Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1679-1697.	2.4	27
33	How Adsorption Affects the Gas–Ice Partitioning of Organics Erupted from Enceladus. Astrophysical Journal, 2019, 873, 28.	4.5	16
34	Atmospheric Waves and Their Possible Effect on the Thermal Structure of Saturn's Thermosphere. Geophysical Research Letters, 2019, 46, 2372-2380.	4.0	20
35	The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini. Geophysical Research Letters, 2019, 46, 6315-6321.	4.0	22
36	Electron Density Distributions in Saturn's Ionosphere. Geophysical Research Letters, 2019, 46, 3061-3068.	4.0	27

#	Article	IF	CITATIONS
37	Microchannel Plate Detection Efficiency to Monoenergetic Photons Between 0.66 and 20 MeV. IEEE Transactions on Nuclear Science, 2018, 65, 980-988.	2.0	6
38	Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 287-296.	2.4	5
39	Cassini CAPS Identification of Pickup Ion Compositions at Rhea. Geophysical Research Letters, 2018, 45, 1704-1712.	4.0	7
40	Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 2018, 306, 256-274.	2.5	4
41	Reconnection Acceleration in Saturn's Dayside Magnetodisk: A Multicase Study with Cassini. Astrophysical Journal Letters, 2018, 868, L23.	8.3	15
42	Models of Saturn's Equatorial Ionosphere Based on In Situ Data From Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 9398-9407.	4.0	26
43	Dust grains fall from Saturn's D-ring into its equatorial upper atmosphere. Science, 2018, 362, .	12.6	37
44	Chemical interactions between Saturn's atmosphere and its rings. Science, 2018, 362, .	12.6	73
45	Ring Shadowing Effects on Saturn's Ionosphere: Implications for Ring Opacity and Plasma Transport. Geophysical Research Letters, 2018, 45, 10,084.	4.0	17
46	Thermal Structure and Composition of Saturn's Upper Atmosphere From Cassini/Ion Neutral Mass Spectrometer Measurements. Geophysical Research Letters, 2018, 45, 10,951.	4.0	22
47	Recurrent Magnetic Dipolarization at Saturn: Revealed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 8502-8517.	2.4	14
48	Material Flux From the Rings of Saturn Into Its Atmosphere. Geophysical Research Letters, 2018, 45, 10,093.	4.0	25
49	Limits on the Contribution of Endogenic Radiolysis to the Presence of Molecular Oxygen in Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal, 2018, 864, 9.	4.5	3
50	The Cassini RPWS/LP Observations of Dusty Plasma in the Kronian System. Proceedings of the International Astronomical Union, 2018, 14, 415-416.	0.0	0
51	Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus, 2018, 313, 79-92.	2.5	21
52	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
53	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	10.3	52
54	Searching for life with mass spectrometry. Astronomy and Geophysics, 2018, 59, 3.23-3.24.	0.2	4

#	Article	IF	CITATIONS
55	Rotationally driven magnetic reconnection in Saturn's dayside. Nature Astronomy, 2018, 2, 640-645.	10.1	32
56	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	27.8	282
57	Plume and Surface Composition of Enceladus. , 2018, , .		17
58	Applications of the Jupiter Global Ionosphereâ€Thermosphere Model: A case study of auroral electron energy deposition. Journal of Geophysical Research: Space Physics, 2017, 122, 2210-2236.	2.4	4
59	Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 2017, 356, 155-159.	12.6	396
60	Alternative Energy: Production of H ₂ by Radiolysis of Water in the Rocky Cores of Icy Bodies. Astrophysical Journal Letters, 2017, 840, L8.	8.3	37
61	Microchannel plate detector detection efficiency to monoenergetic electrons between 3 and 28 keV. Review of Scientific Instruments, 2017, 88, 053302.	1.3	7
62	Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science, 2017, 356, 1069-1072.	12.6	161
63	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	12.6	229
64	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	12.6	109
65	Impact of Radiogenic Heating on the Formation Conditions of Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal Letters, 2017, 839, L4.	8.3	19
66	The evolution of solar wind strahl with heliospheric distance. Journal of Geophysical Research: Space Physics, 2017, 122, 3858-3874.	2.4	61
67	Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology, 2017, 17, 926-940.	3.0	43
68	Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. Astrobiology, 2017, 17, 786-812.	3.0	20
69	Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan's Ionosphere. Astrophysical Journal Letters, 2017, 844, L18.	8.3	45
70	Two fundamentally different drivers of dipolarizations at Saturn. Journal of Geophysical Research: Space Physics, 2017, 122, 4348-4356.	2.4	22
71	Photoionization Modeling of Titan's Dayside Ionosphere. Astrophysical Journal Letters, 2017, 850, L26.	8.3	3
72	Titan's ionosphere: A survey of solar EUV influences. Journal of Geophysical Research: Space Physics, 2017, 122, 7491-7503.	2.4	17

#	Article	IF	CITATIONS
73	Mechanisms of Saturn's Nearâ€Noon Transient Aurora: In Situ Evidence From Cassini Measurements. Geophysical Research Letters, 2017, 44, 11,217.	4.0	10
74	Corotating Magnetic Reconnection Site in Saturn's Magnetosphere. Astrophysical Journal Letters, 2017, 846, L25.	8.3	23
75	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	8.1	163
76	Ion and aerosol precursor densities in Titan's ionosphere: A multiâ€instrument case study. Journal of Geophysical Research: Space Physics, 2016, 121, 10075-10090.	2.4	23
77	Solar cycle variations in ion composition in the dayside ionosphere of Titan. Journal of Geophysical Research: Space Physics, 2016, 121, 8013-8037.	2.4	10
78	Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft. Geophysical Research Letters, 2016, 43, 6713-6723.	4.0	38
79	Cassini plasma observations of Saturn's magnetospheric cusp. Journal of Geophysical Research: Space Physics, 2016, 121, 12,047.	2.4	12
80	The mass spectrometer for planetary exploration (MASPEX). , 2016, , .		34
81	Enceladus Life Finder: The search for life in a habitable Moon. , 2016, , .		39
82	Ion chemistry in the coma of comet 67P near perihelion. Monthly Notices of the Royal Astronomical Society, 2016, 462, S67-S77.	4.4	28
83	Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1600285.	10.3	393
84	Evidence of <i>m</i> Â=Â1 density mode (plasma cam) in Saturn's rotating magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 2335-2348.	2.4	3
85	Ion energy distributions and densities in the plume of Enceladus. Planetary and Space Science, 2016, 130, 60-79.	1.7	4
86	A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKC Astrophysical Journal Letters, 2016, 819, L33.). 8.3	43
87	A new upper limit to the fieldâ€aligned potential near Titan. Geophysical Research Letters, 2015, 42, 4676-4684.	4.0	15
88	Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2015, 1, e1500377.	10.3	87
89	Modeling insights into the locations of density enhancements from the Enceladus water vapor jets. Journal of Geophysical Research E: Planets, 2015, 120, 1763-1773.	3.6	3
90	An empirical approach to modeling ion production rates in Titan's ionosphere II: Ion production rates on the nightside. Journal of Geophysical Research: Space Physics, 2015, 120, 1281-1298.	2.4	14

#	Article	IF	CITATIONS
91	An empirical approach to modeling ion production rates in Titan's ionosphere I: Ion production rates on the dayside and globally. Journal of Geophysical Research: Space Physics, 2015, 120, 1264-1280.	2.4	18
92	Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0276.	12.6	222
93	A Revised Sensitivity Model for Cassini INMS: Results at Titan. Space Science Reviews, 2015, 190, 47-84.	8.1	54
94	Possible evidence for a methane source in Enceladus' ocean. Geophysical Research Letters, 2015, 42, 1334-1339.	4.0	65
95	The pH of Enceladus' ocean. Geochimica Et Cosmochimica Acta, 2015, 162, 202-219.	3.9	205
96	Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science, 2015, 348, 232-235.	12.6	195
97	Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526, 678-681.	27.8	260
98	Serpentinization and the Formation of H ₂ and CH ₄ on Celestial Bodies (Planets, Moons, Comets). Astrobiology, 2015, 15, 587-600.	3.0	121
99	67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 2015, 347, 1261952.	12.6	403
100	The role of ionâ€molecule reactions in the growth of heavy ions in Titan's ionosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 5951-5963.	2.4	48
101	Developing a selfâ€consistent description of Titan's upper atmosphere without hydrodynamic escape. Journal of Geophysical Research: Space Physics, 2014, 119, 4957-4972.	2.4	38
102	Analytical model of rotating twoâ€cell convection at Saturn. Journal of Geophysical Research: Space Physics, 2014, 119, 1980-1993.	2.4	6
103	Observed decline in Titan's thermospheric methane due to solar cycle drivers. Journal of Geophysical Research: Space Physics, 2014, 119, 8586-8599.	2.4	31
104	Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 2014, 119, 9072-9088.	2.4	47
105	Cusp observation at Saturn's high″atitude magnetosphere by the Cassini spacecraft. Geophysical Research Letters, 2014, 41, 1382-1388.	4.0	34
106	Surface current balance and thermoelectric whistler wings at airless astrophysical bodies: Cassini at Rhea. Journal of Geophysical Research: Space Physics, 2014, 119, 8881-8901.	2.4	6
107	On the possible noble gas deficiency of Pluto's atmosphere. Icarus, 2013, 225, 856-861.	2.5	16
108	Cassini CAPSâ€ELS observations of negative ions in Titan's ionosphere: Trends of density with altitude. Geophysical Research Letters, 2013, 40, 4481-4485.	4.0	55

#	Article	IF	CITATIONS
109	Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 2013, 118, 5099-5108.	2.4	13
110	THE ¹² C/ ¹³ C RATIO ON TITAN FROM <i>CASSINI</i> INMS MEASUREMENTS AND IMPLICATIONS FOR THE EVOLUTION OF METHANE. Astrophysical Journal, 2012, 749, 160.	4.5	66
111	Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations. Journal of Geophysical Research, 2012, 117, .	3.3	67
112	THE DUAL ORIGIN OF THE NITROGEN DEFICIENCY IN COMETS: SELECTIVE VOLATILE TRAPPING IN THE NEBULA AND POSTACCRETION RADIOGENIC HEATING. Astrophysical Journal, 2012, 757, 146.	4.5	29
113	Titan's ionospheric composition and structure: Photochemical modeling of Cassini INMS data. Journal of Geophysical Research, 2012, 117, .	3.3	60
114	Simulating the time-dependent response of Titan's upper atmosphere to periods of magnetospheric forcing. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	19
115	Titan's thermospheric response to various plasma environments. Journal of Geophysical Research, 2011, 116, .	3.3	73
116	Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape. Journal of Geophysical Research, 2011, 116, .	3.3	24
117	The composition and structure of the Enceladus plume. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	136
118	Energetics of Titan's ionosphere: Model comparisons with Cassini data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	27
119	The water vapor plumes of Enceladus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	39
120	Cassini Finds an Oxygen–Carbon Dioxide Atmosphere at Saturn's Icy Moon Rhea. Science, 2010, 330, 1813-1815.	12.6	116
121	Ion transport in Titan's upper atmosphere. Journal of Geophysical Research, 2010, 115, .	3.3	38
122	Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini's Ion Neutral Mass Spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	56
123	An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus. Journal of Geophysical Research, 2010, 115, .	3.3	31
124	Asymmetry in the Jovian auroral Lymanâ€ <i>α</i> line profile due to thermospheric highâ€speed flow. Journal of Geophysical Research, 2010, 115, .	3.3	9
125	Modification of the plasma in the nearâ€vicinity of Enceladus by the enveloping dust. Geophysical Research Letters, 2010, 37, .	4.0	26
126	Cassini INMS observations of neutral molecules in Saturn's Eâ€ring. Journal of Geophysical Research, 2010, 115, .	3.3	25

#	Article	IF	CITATIONS
127	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global Ionosphereâ€Thermosphere Model and benchmark simulations. Journal of Geophysical Research, 2010, 115, .	3.3	34
128	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 2. Alternative scenarios for methane escape. Journal of Geophysical Research, 2010, 115, .	3.3	27
129	Negative ions at Titan and Enceladus: recent results. Faraday Discussions, 2010, 147, 293.	3.2	51
130	Design and performance evaluation of a two-stage resistively-heated thermal modulator for GC × GC. Analytical Methods, 2010, 2, 936.	2.7	18
131	X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND. , 2009, , 229-244.		3
132	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
133	Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 2009, 460, 487-490.	27.8	470
134	A primordial origin for the atmospheric methane of Saturn's moon Titan. Icarus, 2009, 204, 749-751.	2.5	31
135	Isotopic evolution of the major constituents of Titan's atmosphere based on Cassini data. Planetary and Space Science, 2009, 57, 1917-1930.	1.7	63
136	INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison. Planetary and Space Science, 2009, 57, 1895-1916.	1.7	152
137	Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer. Geophysical Research Letters, 2009, 36, .	4.0	31
138	Fine jet structure of electrically charged grains in Enceladus' plume. Geophysical Research Letters, 2009, 36, .	4.0	86
139	Diurnal variations of Titan's ionosphere. Journal of Geophysical Research, 2009, 114, .	3.3	69
140	Processes of auroral thermal structure at Jupiter: Analysis of multispectral temperature observations with the Jupiter Thermosphere General Circulation Model. Journal of Geophysical Research, 2009, 114, .	3.3	18
141	Electron density dropout near Enceladus in the context of waterâ€vapor and waterâ€ice. Geophysical Research Letters, 2009, 36, .	4.0	42
142	Mass Loss Processes in Titan's Upper Atmosphere. , 2009, , 373-391.		42
143	Volatile Origin and Cycles: Nitrogen and Methane. , 2009, , 177-199.		18
144	High-Altitude Production of Titan's Aerosols. , 2009, , 201-214.		9

#	Article	IF	CITATIONS
145	Enceladus: An Active Cryovolcanic Satellite. , 2009, , 683-724.		65
146	Neutral Atmospheres. Space Science Reviews, 2008, 139, 191-234.	8.1	27
147	Exospheres and Atmospheric Escape. Space Science Reviews, 2008, 139, 355-397.	8.1	103
148	Coupled ion and neutral rotating model of Titan's upper atmosphere. Icarus, 2008, 197, 110-136.	2.5	77
149	Energetic ion precipitation at Titan. Geophysical Research Letters, 2008, 35, .	4.0	128
150	Spectral morphology of the Xâ€ray emission from Jupiter's aurorae. Journal of Geophysical Research, 2008, 113, .	3.3	75
151	Horizontal structures and dynamics of Titan's thermosphere. Journal of Geophysical Research, 2008, 113, .	3.3	83
152	The source of heavy organics and aerosols in Titan's atmosphere. Proceedings of the International Astronomical Union, 2008, 4, 321-326.	0.0	14
153	Neutral Atmospheres. Space Sciences Series of ISSI, 2008, , 191-234.	0.0	1
154	The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 2007, 316, 870-875.	12.6	585
155	Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona. Journal of Geophysical Research, 2007, 112, .	3.3	108
156	Discovery of heavy negative ions in Titan's ionosphere. Geophysical Research Letters, 2007, 34, .	4.0	365
157	A study of Jupiter's aurorae with XMM-Newton. Astronomy and Astrophysics, 2007, 463, 761-774.	5.1	104
158	X-rays from solar system objects. Planetary and Space Science, 2007, 55, 1135-1189.	1.7	119
159	First terrestrial soft X-ray auroral observation by the Chandra X-ray Observatory. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 179-187.	1.6	21
160	Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Science Reviews, 2007, 128, 745-801.	8.1	331
161	Titan's corona: The contribution of exothermic chemistry. Icarus, 2007, 191, 236-250.	2.5	51
162	On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study. Annales Geophysicae, 2007, 25, 2359-2369.	1.6	78

#	Article	IF	CITATIONS
163	Composition of Titan's ionosphere. Geophysical Research Letters, 2006, 33, .	4.0	191
164	X-ray emission from the outer planets: Albedo for scattering and fluorescence of solar X rays. Journal of Geophysical Research, 2006, 111, .	3.3	32
165	Low- to middle-latitude X-ray emission from Jupiter. Journal of Geophysical Research, 2006, 111, .	3.3	30
166	Waves and horizontal structures in Titan's thermosphere. Journal of Geophysical Research, 2006, 111, .	3.3	52
167	At-column heating and a resistively heated, liquid-cooled thermal modulator for a low-resource bench-top GC×GC. Journal of Separation Science, 2006, 29, 1001-1008.	2.5	26
168	Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 2006, 311, 1419-1422.	12.6	590
169	The Discovery of Oxygen Kα X-Ray Emission from the Rings of Saturn. Astrophysical Journal, 2005, 627, L73-L76.	4.5	29
170	Chandra Observation of an X-Ray Flare at Saturn: Evidence of Direct Solar Control on Saturn's Disk X-Ray Emissions. Astrophysical Journal, 2005, 624, L121-L124.	4.5	40
171	Cassini UVIS observations of Jupiter's auroral variability. Icarus, 2005, 178, 312-326.	2.5	39
172	Oxygen lons Observed Near Saturn's A Ring. Science, 2005, 307, 1260-1262.	12.6	57
173	Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 2005, 308, 982-986.	12.6	402
174	Electrically Heated, Air-Cooled Thermal Modulator and at-Column Heating for Comprehensive Two-Dimensional Gas Chromatography. Analytical Chemistry, 2005, 77, 2786-2794.	6.5	39
175	Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 2005, 110, .	3.3	69
176	Solar control on Jupiter's equatorial X-ray emissions: 26–29 November 2003 XMM-Newton observation. Geophysical Research Letters, 2005, 32, .	4.0	53
177	Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal of Geophysical Research, 2005, 110, .	3.3	149
178	Processes of equatorial thermal structure at Jupiter: An analysis of the Galileo temperature profile with a three-dimensional model. Journal of Geophysical Research, 2005, 110, .	3.3	17
179	Titan's ionosphere: Model comparisons with Cassini Ta data. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	81
180	First observation of Jupiter by XMM-Newton. Astronomy and Astrophysics, 2004, 424, 331-337.	5.1	62

#	Article	IF	CITATIONS
181	The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Science Reviews, 2004, 114, 113-231.	8.1	188
182	A possible auroral signature of a magnetotail reconnection process on Jupiter. Journal of Geophysical Research, 2004, 109, .	3.3	64
183	The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. , 2004, , 113-231.		14
184	Jupiter's main auroral oval observed with HST-STIS. Journal of Geophysical Research, 2003, 108, .	3.3	157
185	Jupiter's polar auroral emissions. Journal of Geophysical Research, 2003, 108, .	3.3	135
186	Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research, 2003, 108, .	3.3	91
187	Discovery of Soft Xâ€Ray Emission from Io, Europa, and the Io Plasma Torus. Astrophysical Journal, 2002, 572, 1077-1082.	4.5	48
188	Comparison of auroral processes: Earth and Jupiter. Geophysical Monograph Series, 2002, , 115-139.	0.1	14
189	A pulsating auroral X-ray hot spot on Jupiter. Nature, 2002, 415, 1000-1003.	27.8	183
190	Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 2002, 415, 1003-1005.	27.8	98
191	Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 2002, 415, 997-1000.	27.8	203
192	A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 2001, 106, 12933-12952.	3.3	169
193	An auroral flare at Jupiter. Nature, 2001, 410, 787-789.	27.8	130
194	The role of H3+in planetary atmospheres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2485-2502.	3.4	106
195	Jovian X-ray emission from solar X-ray scattering. Geophysical Research Letters, 2000, 27, 1339-1342.	4.0	54
196	The Longitudinal Variation of the Color Ratio of the Jovian Ultraviolet Aurora: A Geometric Effect?. Geophysical Research Letters, 1998, 25, 1601-1604.	4.0	7
197	Europa's surface composition and sputter-produced ionosphere. Geophysical Research Letters, 1998, 25, 3257-3260.	4.0	62
198	Secular and local time dependence of Jovian X ray emissions. Journal of Geophysical Research, 1998, 103, 20083-20088.	3.3	35

J Hunter Waite, Jr

#	Article	IF	CITATIONS
199	Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 1998, 103, 20217-20236.	3.3	170
200	Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures. Science, 1997, 276, 104-108.	12.6	91
201	Auroral oxygen precipitation at Jupiter. Journal of Geophysical Research, 1995, 100, 17153.	3.3	94
202	ROSAT Observations of X-ray Emissions from Jupiter During the Impact of Comet Shoemaker-Levy 9. Science, 1995, 268, 1598-1601.	12.6	27
203	ROSAT observations of the Jupiter aurora. Journal of Geophysical Research, 1994, 99, 14799.	3.3	87
204	A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope. Science, 1994, 266, 1675-1678.	12.6	55
205	Extreme ultraviolet explorer satellite observation of Jupiter's Io plasma torus. Astrophysical Journal, 1994, 426, L51.	4.5	56
206	Thermal profiles in the auroral regions of Jupiter. Journal of Geophysical Research, 1993, 98, 18803-18811.	3.3	69
207	Comment on "Bremsstrahlung X rays from Jovian auroral electrons―by D. D. Barbosa. Journal of Geophysical Research, 1991, 96, 19529-19532.	3.3	13
208	Detection of H3+ on Jupiter. Nature, 1989, 340, 539-541.	27.8	314
209	Doppler shifted H Ly Î \pm Emission from Jupiter's aurora. Geophysical Research Letters, 1989, 16, 587-590.	4.0	31
210	The Jovian aurora: Electron or ion precipitation?. Journal of Geophysical Research, 1988, 93, 7244-7250.	3.3	55
211	The precipitation of energetic heavy ions into the upper atmosphere of Jupiter. Journal of Geophysical Research, 1988, 93, 7251-7271.	3.3	75
212	Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow. Journal of Geophysical Research, 1988, 93, 14295-14308.	3.3	18
213	Dynamic evolution of low-energy ions in the terrestrial magnetosphere. Geophysical Monograph Series, 1988, , 177-183.	0.1	7
214	The ionosphere of Uranus: A myriad of possibilities. Geophysical Research Letters, 1986, 13, 6-9.	4.0	17
215	The geomagnetic mass spectrometer— mass and energy dispersions of ionospheric ion flows into the magnetosphere. Nature, 1985, 316, 612-613.	27.8	36
216	On the origin of polar ion streams. Geophysical Research Letters, 1985, 12, 149-152.	4.0	18

#	Article	IF	CITATIONS
217	Supersonic ion outflows in the polar magnetosphere via the geomagnetic spectrometer. Geophysical Research Letters, 1985, 12, 757-760.	4.0	21
218	New model of Saturn's ionosphere with an influx of water from the rings. Nature, 1984, 312, 136-138.	27.8	140
219	Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. Journal of Geophysical Research, 1983, 88, 6143-6163.	3.3	221
220	Structure of the ionosphere and atmosphere of Saturn From Pioneer 11 Saturn radio occultation. Journal of Geophysical Research, 1980, 85, 5857-5870.	3.3	84
221	The ionosphere of Saturn: Predictions for Pioneer 11. Geophysical Research Letters, 1979, 6, 723-726.	4.0	21
222	Time-Dependent Numerical Simulation of Hot Ion Outflow from the Polar Ionosphere. Geophysical Monograph Series, 0, , 366-371.	0.1	7
223	Observations of Coherent Transverse Ion Acceleration. Geophysical Monograph Series, 0, , 50-55.	0.1	20
224	Ion Energization in Upwelling Ion Events. Geophysical Monograph Series, 0, , 61-66.	0.1	13
225	Statistical Study of Enhanced Ion Fluxes in the Outer Plasmasphere. Geophysical Monograph Series, 0, , 172-176.	0.1	3
226	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	3.7	1