List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342121/publications.pdf Version: 2024-02-01

IIMESH P DESAL

#	Article	IF	CITATIONS
1	Advances in Studying Glycosaminoglycan–Protein Interactions Using Capillary Electrophoresis. Methods in Molecular Biology, 2022, 2303, 365-387.	0.9	2
2	Aqueous Molecular for Understanding Glycosaminoglycan Recognition by. Methods in Molecular Biology, 2022, 2303, 49-62.	0.9	0
3	Computerized for Discovering Promising Glycosaminoglycan that Modulate Protein Function. Methods in Molecular Biology, 2022, 2303, 513-537.	0.9	1
4	Thermodynamic Affinity and Nature of Forces Defining Glycosaminoglycan- Systems Using. Methods in Molecular Biology, 2022, 2303, 259-278.	0.9	0
5	In-Depth Molecular Dynamics Study of All Possible Chondroitin Sulfate Disaccharides Reveals Key Insight into Structural Heterogeneity and Dynamism. Biomolecules, 2022, 12, 77.	4.0	6
6	Molecular dynamics simulations to understand glycosaminoglycan interactions in the free- and protein-bound states. Current Opinion in Structural Biology, 2022, 74, 102356.	5.7	23
7	3-O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Computational and Structural Biotechnology Journal, 2022, 20, 3884-3898.	4.1	6
8	Metabolic engineering of non-pathogenic Escherichia coli strains for the controlled production of low molecular weight heparosan and size-specific heparosan oligosaccharides. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129765.	2.4	10
9	High dose acetaminophen inhibits STAT3 and has free radical independent anti-cancer stem cell activity. Neoplasia, 2021, 23, 348-359.	5.3	9
10	Combinatorial Virtual Library Screening Study of Transforming Growth Factor-β2–Chondroitin Sulfate System. International Journal of Molecular Sciences, 2021, 22, 7542.	4.1	9
11	On the Selectivity of Heparan Sulfate Recognition by SARS-CoV-2 Spike Glycoprotein. ACS Medicinal Chemistry Letters, 2021, 12, 1710-1717.	2.8	22
12	Studies on fragment-based design of allosteric inhibitors of human factor XIa. Bioorganic and Medicinal Chemistry, 2020, 28, 115762.	3.0	6
13	Discovery of Sulfated Small Molecule Inhibitors of Matrix Metalloproteinase-8. Biomolecules, 2020, 10, 1166.	4.0	8
14	Visualizing antithrombin-binding 3- <i>O</i> -sulfated heparan sulfate motifs on cell surfaces. Chemical Communications, 2020, 56, 14423-14426.	4.1	7
15	Structural Insights Into How Proteoglycans Determine Chemokine-CXCR1/CXCR2 Interactions: Progress and Challenges. Frontiers in Immunology, 2020, 11, 660.	4.8	32
16	Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discovery Today, 2020, 25, 1535-1544.	6.4	85
17	Enzyme immobilization offers a robust tool to scale up the production of longer, diverse, natural glycosaminoglycan oligosaccharides. Glycobiology, 2020, 30, 768-773.	2.5	0
18	Inhibition of Human Cytomegalovirus Entry into Host Cells through A Pleiotropic Small Molecule. International Journal of Molecular Sciences, 2020, 21, 1676.	4.1	7

#	Article	IF	CITATIONS
19	Rigorous analysis of free solution glycosaminoglycan dynamics using simple, new tools. Glycobiology, 2020, 30, 516-527.	2.5	10
20	Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3-O-Sulfotransferase 1. Computational and Structural Biotechnology Journal, 2020, 18, 933-941.	4.1	13
21	A synthetic heparin mimetic that allosterically inhibits factor XIaÂand reduces thrombosis in vivo without enhanced risk of bleeding. Journal of Thrombosis and Haemostasis, 2019, 17, 2110-2122.	3.8	22
22	A Synthetic, Small, Sulfated Agent Is a Promising Inhibitor of Chlamydia spp. Infection in vivo. Frontiers in Microbiology, 2019, 9, 3269.	3.5	9
23	On the Process of Discovering Leads That Target the Heparin-Binding Site of Neutrophil Elastase in the Sputum of Cystic Fibrosis Patients. Journal of Medicinal Chemistry, 2019, 62, 5501-5511.	6.4	14
24	Perspective on computational simulations of glycosaminoglycans. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1388.	14.6	21
25	2â€Aminobenzamideâ€Based Factor Xa Inhibitors with Novel Mono―and Biâ€Aryls as S4 Binding Elements. ChemistrySelect, 2019, 4, 802-809.	1.5	1
26	A Unique Nonsaccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. Molecular Cancer Therapeutics, 2019, 18, 51-61.	4.1	39
27	Polymeric fluorescent heparin as one-step FRET substrate of human heparanase. Carbohydrate Polymers, 2019, 205, 385-391.	10.2	21
28	A synthetic glycosaminoglycan mimetic blocks HSV-1 infection in human iris stromal cells. Antiviral Research, 2019, 161, 154-162.	4.1	14
29	A Robust, One-step FRET Assay for Human Heparanase. Bio-protocol, 2019, 9, e3356.	0.4	3
30	Design and Synthesis of Photoaffinity Probe for Identification of Protein Targets of Glycosaminoglycan Mimetics. FASEB Journal, 2019, 33, 784.11.	0.5	0
31	Glycosaminoglycans and Glycosaminoglycan Mimetics as Human Neutrophil Elastase Inhibitors for Cystic Fibrosis Management. FASEB Journal, 2019, 33, 782.2.	0.5	0
32	A small, synthetic glycosaminoglycan mimetic as an inhibitor of human heparanase. FASEB Journal, 2019, 33, 675.12.	0.5	0
33	Towards computational prediction of the heparan sulfate interactome. FASEB Journal, 2019, 33, 800.5.	0.5	0
34	anexVis: visual analytics framework for analysis of RNA expression. Bioinformatics, 2018, 34, 2510-2512.	4.1	1
35	A small group of sulfated benzofurans induces steady-state submaximal inhibition of thrombin. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1101-1105.	2.2	17
36	Tamarind xyloglucan attenuates dextran sodium sulfate induced ulcerative colitis: Role of antioxidation. Journal of Functional Foods, 2018, 42, 327-338.	3.4	15

#	Article	IF	CITATIONS
37	So you think computational approaches to understanding glycosaminoglycan–protein interactions are too dry and too rigid? Think again!. Current Opinion in Structural Biology, 2018, 50, 91-100.	5.7	68
38	Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thrombosis Research, 2018, 165, 61-67.	1.7	8
39	Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Frontiers in Pharmacology, 2018, 9, 1315.	3.5	19
40	Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. Journal of Biological Chemistry, 2018, 293, 17817-17828.	3.4	26
41	Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. Journal of Functional Foods, 2018, 47, 1-10.	3.4	30
42	Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Medicinal Chemistry Letters, 2018, 9, 797-802.	2.8	27
43	Lysines and Arginines play non-redundant roles in mediating chemokine-glycosaminoglycan interactions. Scientific Reports, 2018, 8, 12289.	3.3	18
44	Molecular principles for heparin oligosaccharide–based inhibition of neutrophil elastase in cystic fibrosis. Journal of Biological Chemistry, 2018, 293, 12480-12490.	3.4	34
45	Understanding Heparin/Hparan Sulfate Biosynthetic Pathway in the Generation of Antithrombin Binding Motif using Combinatorial Virtual Library Screening (CVLS). FASEB Journal, 2018, 32, 673.29.	0.5	0
46	Understanding Specificity of Glycosaminoglycan Interactions with Proteins. FASEB Journal, 2018, 32, 544.12.	0.5	0
47	Computational Study of Glycosaminoglycan Specificity for Growth Factor and Chemokine Family Members. FASEB Journal, 2018, 32, 544.13.	0.5	0
48	A Hexasaccharide Containing Rare 2â€ <i>O</i> â€Sulfateâ€Clucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angewandte Chemie - International Edition, 2017, 56, 2312-2317.	13.8	54
49	A Hexasaccharide Containing Rare 2â€≺i>Oâ€Sulfateâ€Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angewandte Chemie, 2017, 129, 2352-2357.	2.0	9
50	Comparative analysis of INLIGHTâ,,¢-labeled enzymatically depolymerized heparin by reverse-phase chromatography and high-performance mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 499-509.	3.7	8
51	Heparin depolymerization by immobilized heparinase: A review. International Journal of Biological Macromolecules, 2017, 99, 721-730.	7.5	17
52	Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics. Journal of Medicinal Chemistry, 2017, 60, 641-657.	6.4	28
53	Sulfated dehydropolymer of caffeic acid: InÂvitro anti-lung cell death activity and inÂvivo intervention in emphysema induced by VEGF receptor blockade. Pulmonary Pharmacology and Therapeutics, 2017, 45, 181-190.	2.6	9
54	Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signalling rely on distinct domains. Open Biology, 2017, 7, 170133.	3.6	33

#	Article	IF	CITATIONS
55	2-O, 3-O Desulfated Heparin Blocks High Mobility Group Box 1 Release by Inhibition of p300 Acetyltransferase Activity. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 90-98.	2.9	20
56	Maintaining pH-dependent conformational flexibility of M1 is critical for efficient influenza A virus replication. Emerging Microbes and Infections, 2017, 6, 1-11.	6.5	11
57	Immobilization alters heparin cleaving properties of heparinase I. Glycobiology, 2017, 27, 994-998.	2.5	6
58	A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules. PLoS ONE, 2017, 12, e0171619.	2.5	22
59	Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile. PLoS ONE, 2016, 11, e0160189.	2.5	18
60	Blocking inhibition of prothrombinase by tissue factor pathway inhibitor alpha: a procoagulant property of heparins. British Journal of Haematology, 2016, 175, 123-132.	2.5	4
61	Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. Journal of Biological Chemistry, 2016, 291, 20539-20550.	3.4	47
62	Estimating glycosaminoglycan–protein interaction affinity: water dominates the specific antithrombin–heparin interaction. Glycobiology, 2016, 26, 1041-1047.	2.5	19
63	Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin. Scientific Reports, 2016, 6, 24043.	3.3	32
64	Broad Spectrum Anti-Influenza Agents by Inhibiting Self-Association of Matrix Protein 1. Scientific Reports, 2016, 6, 32340.	3.3	10
65	Factor XIa inhibitors: A review of the patent literature. Expert Opinion on Therapeutic Patents, 2016, 26, 323-345.	5.0	58
66	Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-408.	8.2	32
67	Heparan sulfate hexasaccharide selectively inhibits cancer stem cells self-renewal by activating p38 MAP kinase. Oncotarget, 2016, 7, 84608-84622.	1.8	34
68	Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Biochemical Journal, 2015, 472, 121-133.	3.7	91
69	Plasmin Regulation through Allosteric, Sulfated, Small Molecules. Molecules, 2015, 20, 608-624.	3.8	22
70	6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells. PLoS ONE, 2015, 10, e0116409.	2.5	22
71	Transforming growth factor-β ₂ is sequestered in preterm human milk by chondroitin sulfate proteoglycans. American Journal of Physiology - Renal Physiology, 2015, 309, G171-G180.	3.4	20
72	Investigation of the heparin–thrombin interaction by dynamic force spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1099-1106.	2.4	9

#	Article	IF	CITATIONS
73	Glycosaminoglycans. Methods in Molecular Biology, 2015, 1229, v.	0.9	5
74	Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants. Thrombosis Research, 2015, 136, 379-387.	1.7	38
75	Chemoenzymatically Prepared Heparan Sulfate Containing Rare 2-O-Sulfonated Glucuronic Acid Residues. ACS Chemical Biology, 2015, 10, 1485-1494.	3.4	16
76	Heparin interaction with a receptor on hyperglycemic dividing cells prevents intracellular hyaluronan synthesis and autophagy responses in models of type 1 diabetes. Matrix Biology, 2015, 48, 36-41.	3.6	17
77	Designing "High-Affinity, High-Specificity―Glycosaminoglycan Sequences Through Computerized Modeling. Methods in Molecular Biology, 2015, 1229, 289-314.	0.9	16
78	Glycosaminoglycan–Protein Interaction Studies Using Fluorescence Spectroscopy. Methods in Molecular Biology, 2015, 1229, 335-353.	0.9	12
79	Synthesis of Glycosaminoglycan Mimetics Through Sulfation of Polyphenols. Methods in Molecular Biology, 2015, 1229, 49-67.	0.9	11
80	A Simple Method for Discovering Druggable, Specific Glycosaminoglycan-Protein Systems. Elucidation of Key Principles from Heparin/Heparan Sulfate-Binding Proteins. PLoS ONE, 2015, 10, e0141127.	2.5	40
81	Studying Glycosaminoglycan–Protein Interactions Using Capillary Electrophoresis. Methods in Molecular Biology, 2015, 1229, 355-375.	0.9	1
82	Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Glycobiology, 2014, 24, 1323-1333.	2.5	38
83	A simple, general approach of allosteric coagulation enzyme inhibition through monosulfated hydrophobic scaffolds. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5716-5720.	2.2	3
84	Discovery methodology for the development of direct factor VIIa inhibitors. Expert Opinion on Drug Discovery, 2014, 9, 859-872.	5.0	2
85	Recent Advances on Plasmin Inhibitors for the Treatment of Fibrinolysisâ€Related Disorders. Medicinal Research Reviews, 2014, 34, 1168-1216.	10.5	65
86	An update on recent patents on thrombin inhibitors (2010 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 47-67.	5.0	14
87	Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin. Thrombosis Research, 2014, 134, 1123-1129.	1.7	30
88	Targeting the GPIbα Binding Site of Thrombin To Simultaneously Induce Dual Anticoagulant and Antiplatelet Effects. Journal of Medicinal Chemistry, 2014, 57, 3030-3039.	6.4	22
89	Substantial non-electrostatic forces are needed to induce allosteric disruption of thrombin's active site through exosite 2. Biochemical and Biophysical Research Communications, 2014, 452, 813-816.	2.1	8
90	Synthetic, Non-saccharide, Glycosaminoglycan Mimetics Selectively Target Colon Cancer Stem Cells. ACS Chemical Biology, 2014, 9, 1826-1833.	3.4	37

#	Article	IF	CITATIONS
91	Designing Allosteric Inhibitors of Factor XIa. Lessons from the Interactions of Sulfated Pentagalloylglucopyranosides. Journal of Medicinal Chemistry, 2014, 57, 4805-4818.	6.4	49
92	Allosteric Inhibition of Human Factor XIa: Discovery of Monosulfated Benzofurans as a Class of Promising Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3559-3569.	6.4	24
93	Sulfated Caffeic Acid Dehydropolymer Attenuates Elastase and Cigarette Smoke Extract–induced Emphysema in Rats: Sustained Activity and a Need of Pulmonary Delivery. Lung, 2014, 192, 481-492.	3.3	10
94	A Nanosensor for Ultrasensitive Detection of Oversulfated Chondroitin Sulfate Contaminant in Heparin. Journal of the American Chemical Society, 2014, 136, 554-557.	13.7	51
95	Crystal Structures of Influenza A Virus Matrix Protein M1: Variations on a Theme. PLoS ONE, 2014, 9, e109510.	2.5	32
96	Specificity of glycosaminoglycanâ€protein interactions: the role of desolvation (1007.5). FASEB Journal, 2014, 28, 1007.5.	0.5	0
97	On scaffold hopping: Challenges in the discovery of sulfated small molecules as mimetics of glycosaminoglycans. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 355-359.	2.2	15
98	Novel low molecular weight lignins as potential anti-emphysema agents: InÂvitro triple inhibitory activity against elastase, oxidation andÂinflammation. Pulmonary Pharmacology and Therapeutics, 2013, 26, 296-304.	2.6	32
99	Sulfated Pentagalloylglucoside Is a Potent, Allosteric, and Selective Inhibitor of Factor XIa. Journal of Medicinal Chemistry, 2013, 56, 867-878.	6.4	81
100	Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to Its Heparin-Binding Site. Journal of Medicinal Chemistry, 2013, 56, 2415-2428.	6.4	38
101	Sulfation Patterns Determine Cellular Internalization of Heparin-Like Polysaccharides. Molecular Pharmaceutics, 2013, 10, 1442-1449.	4.6	36
102	Designing Allosteric Regulators of Thrombin. Exosite 2 Features Multiple Subsites That Can Be Targeted by Sulfated Small Molecules for Inducing Inhibition. Journal of Medicinal Chemistry, 2013, 56, 5059-5070.	6.4	48
103	The promise of sulfated synthetic small molecules as modulators of glycosaminoglycan function. Future Medicinal Chemistry, 2013, 5, 1363-1366.	2.3	28
104	The Compensatory G88R Change Is Essential in Restoring the Normal Functions of Influenza A/WSN/33 Virus Matrix Protein 1 with a Disrupted Nuclear Localization Signal. Journal of Virology, 2013, 87, 345-353.	3.4	8
105	Sulfated, low molecular weight lignins inhibit a select group of heparin-binding serine proteases. Biochemical and Biophysical Research Communications, 2012, 417, 382-386.	2.1	25
106	Discovery of novel sulfonated small molecules that inhibit vascular tube formation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4467-4470.	2.2	18
107	Potent direct inhibitors of factor Xa based on the tetrahydroisoquinoline scaffold. European Journal of Medicinal Chemistry, 2012, 54, 771-783.	5.5	19
108	Designing Allosteric Regulators of Thrombin. Monosulfated Benzofuran Dimers Selectively Interact With Arg173 of Exosite 2 to Induce Inhibition. Journal of Medicinal Chemistry, 2012, 55, 6888-6897.	6.4	37

#	Article	IF	CITATIONS
109	Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 908, 45-51.	2.3	2
110	On the Specificity of Heparin/Heparan Sulfate Binding to Proteins. Anion-Binding Sites on Antithrombin and Thrombin Are Fundamentally Different. PLoS ONE, 2012, 7, e48632.	2.5	45
111	Electronically rich N-substituted tetrahydroisoquinoline 3-carboxylic acid esters:Âconcise synthesis and conformational studies. Tetrahedron, 2012, 68, 2027-2040.	1.9	19
112	Interaction of Thrombin with Sucrose Octasulfate. Biochemistry, 2011, 50, 6973-6982.	2.5	19
113	Rational Design of Potent, Small, Synthetic Allosteric Inhibitors of Thrombin. Journal of Medicinal Chemistry, 2011, 54, 5522-5531.	6.4	48
114	Identification of the site of binding of sulfated, low molecular weight lignins on thrombin. Biochemical and Biophysical Research Communications, 2011, 413, 348-352.	2.1	21
115	Designing Nonsaccharide, Allosteric Activators of Antithrombin for Accelerated Inhibition of Factor Xa. Journal of Medicinal Chemistry, 2011, 54, 6125-6138.	6.4	33
116	Linear polyalkylamines as fingerprinting agents in capillary electrophoresis of lowâ€molecularâ€weight heparins and glycosaminoglycans. Electrophoresis, 2011, 32, 3070-3077.	2.4	3
117	Serpin–Glycosaminoglycan Interactions. Methods in Enzymology, 2011, 501, 105-137.	1.0	36
118	Study of physico-chemical properties of novel highly sulfated, aromatic, mimetics of heparin and heparan sulfate. Journal of Pharmaceutical Sciences, 2010, 99, 1207-1216.	3.3	20
119	Self-supported flare-stack vibrations in ammonia plant. Process Safety Progress, 2010, 29, 254-263.	1.0	2
120	Sulfated, low-molecular-weight lignins are potent inhibitors of plasmin, in addition to thrombin and factor Xa: Novel opportunity for controlling complex pathologies. Thrombosis and Haemostasis, 2010, 103, 507-515.	3.4	30
121	Chemoselective precipitation of lactose from a lactose/sucrose mixture: proof of concept for a new separation methodology. Supramolecular Chemistry, 2010, 22, 751-757.	1.2	1
122	Nonsulfated, Cinnamic Acid-Based Lignins are Potent Antagonists of HSV-1 Entry into Cells. Biomacromolecules, 2010, 11, 1412-1416.	5.4	37
123	Understanding Dermatan Sulfateâ^'Heparin Cofactor II Interaction through Virtual Library Screening. ACS Medicinal Chemistry Letters, 2010, 1, 281-285.	2.8	38
124	Chemical sulfation of small molecules—advances and challenges. Tetrahedron, 2010, 66, 2907-2918.	1.9	145
125	Interaction of Antithrombin with Sulfated, Low Molecular Weight Lignins. Journal of Biological Chemistry, 2009, 284, 20897-20908.	3.4	38
126	Capillary electrophoretic study of small, highly sulfated, nonâ€sugar molecules interacting with antithrombin. Electrophoresis, 2009, 30, 1544-1551.	2.4	11

#	Article	IF	CITATIONS
127	On designing non-saccharide, allosteric activators of antithrombin. European Journal of Medicinal Chemistry, 2009, 44, 2626-2631.	5.5	27
128	First steps in the direction of synthetic, allosteric, direct inhibitors of thrombin and factor Xa. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4126-4129.	2.2	36
129	Characterization of the plasma and blood anticoagulant potential of structurally and mechanistically novel oligomers of 4-hydroxycinnamic acids. Blood Coagulation and Fibrinolysis, 2009, 20, 27-34.	1.0	22
130	Application of Molecular Connectivity and Electroâ€Topological Indices in Quantitative Structure–Activity Analysis of Pyrazole Derivatives as Inhibitors of Factor Xa and Thrombin. Chemistry and Biodiversity, 2008, 5, 2609-2620.	2.1	5
131	A capillary electrophoretic method for fingerprinting low molecular weight heparins. Analytical Biochemistry, 2008, 380, 229-234.	2.4	19
132	Recent Research Developments in the Direct Inhibition of Coagulation Proteinases – Inhibitors of the Initiation Phase. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 323-336.	1.0	12
133	A Novel Allosteric Pathway of Thrombin Inhibition. Journal of Biological Chemistry, 2007, 282, 31891-31899.	3.4	70
134	Viral Inhibition Studies on Sulfated Lignin, a Chemically Modified Biopolymer and a Potential Mimic of Heparan Sulfate. Biomacromolecules, 2007, 8, 1759-1763.	5.4	49
135	Synthesis of Biologically Relevant Biflavanoids – A Review. Chemistry and Biodiversity, 2007, 4, 2495-2527.	2.1	54
136	Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Letters, 2007, 48, 6754-6758.	1.4	69
137	Finding a Needle in a Haystack:Â Development of a Combinatorial Virtual Screening Approach for Identifying High Specificity Heparin/Heparan Sulfate Sequence(s). Journal of Medicinal Chemistry, 2006, 49, 3553-3562.	6.4	68
138	Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorganic and Medicinal Chemistry, 2006, 14, 7988-7998.	3.0	59
139	Synthesis of per-sulfated flavonoids using 2,2,2-trichloro ethyl protecting group and their factor Xa inhibition potential. Bioorganic and Medicinal Chemistry, 2005, 13, 1783-1789.	3.0	31
140	Capillary electrophoresis of highly sulfated flavanoids and flavonoids. Analytical Biochemistry, 2005, 336, 316-322.	2.4	12
141	Antithrombin Activation and Designing Novel Heparin Mimics. , 2005, , 483-512.		2
142	Antithrombin Activation by Nonsulfated, Non-Polysaccharide Organic Polymer. Journal of Medicinal Chemistry, 2005, 48, 1269-1273.	6.4	29
143	Mechanism of Poly(acrylic acid) Acceleration of Antithrombin Inhibition of Thrombin:Â Implications for the Design of Novel Heparin Mimics. Journal of Medicinal Chemistry, 2005, 48, 5360-5368.	6.4	24
144	Importance of Tryptophan 49 of Antithrombin in Heparin Binding and Conformational Activation. Biochemistry, 2005, 44, 11660-11668.	2.5	19

#	Article	IF	CITATIONS
145	Structural Characterization of a Serendipitously Discovered Bioactive Macromolecule, Lignin Sulfate. Biomacromolecules, 2005, 6, 2822-2832.	5.4	25
146	New antithrombin-based anticoagulants. Medicinal Research Reviews, 2004, 24, 151-181.	10.5	125
147	New Antithrombin-Based Anticoagulants. ChemInform, 2004, 35, no.	0.0	0
148	Hydropathic interaction analyses of small organic activators binding to antithrombin. Bioorganic and Medicinal Chemistry, 2004, 12, 633-640.	3.0	17
149	1,2-Dithiole-3-Ones as Potent Inhibitors of the Bacterial 3-Ketoacyl Acyl Carrier Protein Synthase III (FabH). Antimicrobial Agents and Chemotherapy, 2004, 48, 3093-3102.	3.2	88
150	Roles of N-Terminal Region Residues Lys11, Arg13, and Arg24 of Antithrombin in Heparin Recognition and in Promotion and Stabilization of the Heparin-Induced Conformational Changeâ€. Biochemistry, 2004, 43, 675-683.	2.5	24
151	Exploring New Non-Sugar Sulfated Molecules as Activators of Antithrombin ChemInform, 2003, 34, no.	0.0	0
152	Exploring new non-sugar sulfated molecules as activators of antithrombin. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 679-683.	2.2	34
153	Antithrombin III Phenylalanines 122 and 121 Contribute to Its High Affinity for Heparin and Its Conformational Activation. Journal of Biological Chemistry, 2003, 278, 15941-15950.	3.4	52
154	Cytotoxic Cell Granule-mediated Apoptosis. Journal of Biological Chemistry, 2002, 277, 49523-49530.	3.4	93
155	Importance of Lysine 125 for Heparin Binding and Activation of Antithrombin. Biochemistry, 2002, 41, 4779-4788.	2.5	44
156	Interaction of Designed Sulfated Flavanoids with Antithrombin:Â Lessons on the Design of Organic Activators. Journal of Medicinal Chemistry, 2002, 45, 4460-4470.	6.4	48
157	Designing Small, Nonsugar Activators of Antithrombin Using Hydropathic Interaction Analyses. Journal of Medicinal Chemistry, 2002, 45, 1233-1243.	6.4	46
158	Probing Reactive Center Loop Insertion in Serpins: A Simple Method for Ovalbumin. Analytical Biochemistry, 2002, 302, 81-87.	2.4	4
159	Role of Arginine 129 in Heparin Binding and Activation of Antithrombin. Journal of Biological Chemistry, 2000, 275, 18976-18984.	3.4	42
160	Configurational and conformational analyses of α-methylene-γ-butyro steroidal spirolactones. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2537-2542.	0.9	3
161	Highly stereoselective synthesis of spiro-α-methylene-γ-butyrolactones: the role of α-hydroxy substitution. Journal of the Chemical Society Perkin Transactions 1, 1998, , 843-846.	0.9	17
162	Mechanism of Heparin Activation of Antithrombin:Â Evidence for an Induced-Fit Model of Allosteric Activation Involving Two Interaction Subsitesâ€. Biochemistry, 1998, 37, 13033-13041.	2.5	73

#	Article	IF	CITATIONS
163	Mechanism of Heparin Activation of Antithrombin. Journal of Biological Chemistry, 1998, 273, 7478-7487.	3.4	167
164	Differential behavior of (25R)-5,6-epoxyspirostan-22α-O-3β-ol and (25R)-5,6-epoxyspirostan-22α-O-3β,4β-diol toward Dowex. Steroids, 1996, 61, 290-295.	1.8	10
165	Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences, 1995, 84, 212-215.	3.3	31
166	Conformational analysis of sucrose octasulfate by high resolution nuclear magnetic resonance spectroscopy. Carbohydrate Research, 1995, 275, 391-401.	2.3	10
167	Strategy for the sequence analysis of heparin. Glycobiology, 1995, 5, 765-774.	2.5	38
168	Assessing the Structural Integrity of a Lyophilized Protein in Organic Solvents. Journal of the American Chemical Society, 1995, 117, 3940-3945.	13.7	89
169	New Approaches for the Preparation of Hydrophobic Heparin Derivatives. Journal of Pharmaceutical Sciences, 1994, 83, 1034-1039.	3.3	10
170	Molecular weight of low molecular weight heparins by 13C nuclear magnetic resonance spectroscopy. Carbohydrate Research, 1994, 255, 193-212.	2.3	18
171	Low molecular weight dermatan sulfate as an antithrombotic agent Structure-activity relationship studies. Biochemical Pharmacology, 1994, 47, 1241-1252.	4.4	45
172	Protein Structure in the Lyophilized State: A Hydrogen Isotope Exchange/NMR Study with Bovine Pancreatic Trypsin Inhibitor. Journal of the American Chemical Society, 1994, 116, 9420-9422.	13.7	61
173	Oligosaccharide Composition of Heparin and Low-Molecular-Weight Heparins by Capillary Electrophoresis. Analytical Biochemistry, 1993, 213, 120-127.	2.4	95
174	Structure elucidation of a novel acidic tetrasaccharide and hexasaccharide derived from a chemically modified heparin. Carbohydrate Research, 1993, 241, 249-259.	2.3	31
175	Conformational analysis of A and B rings in 2-, 4-, and 6-bromosubstituted steroidal 4-en-3-ones by nuclear magnetic resonance. Steroids, 1993, 58, 170-177.	1.8	7
176	Substrate Specificity of the Heparin Lyases from Flavobacterium heparinum. Archives of Biochemistry and Biophysics, 1993, 306, 461-468.	3.0	142
177	Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry, 1993, 32, 8140-8145.	2.5	167
178	Synthesis of 2'-(3α-benzyloxy-24-norcholan-23-yl)-2',4',4'-trimethyl- 4',5'-dihydrooxazoline-n-oxyl - a new potential spin probe for biomembranes. Tetrahedron, 1992, 48, 133-148.	1.9	14
179	Conformational analysis of ring A and total assignment of 19-functionalized 4-en-3-one steroids. Applicability of 2D NOE as a crucial technique. Journal of Organic Chemistry, 1991, 56, 4625-4631.	3.2	5
180	New steroid haptens for radioimmunoassay: Synthesis of steroids substituted with thioether or ester linkages at the 21±-position. Steroids, 1991, 56, 185-188.	1.8	4

#	Article	IF	CITATIONS
181	On The Protection of 3α-Hydroxy Group of A/B <i>cis</i> Steroids. Synthetic Communications, 1991, 21, 757-770.	2.1	9
182	Conjugation of spirocyclopropane with the carbonyl group. Conformational analysis of spiro [cyclopropane-1,2′-steroids]. Magnetic Resonance in Chemistry, 1991, 29, 148-151.	1.9	4
183	A simple high-yielding synthesis of spiro[cyclopropane-1,2′-steroids]. Liebigs Annalen Der Chemie, 1990, 1990, 711-712.	0.8	7
184	New Steroid Haptens for Radioimmunoassay part II. Synthesis of Thioether Based Haptens for Testosterone. Synthetic Communications, 1990, 20, 2423-2438.	2.1	3
185	Reductive Alkylation of Nitrochromenes. Synthesis of Spiro-[N-hydroxy]-lactams. Synthetic Communications, 1990, 20, 1733-1742.	2.1	7