James R Lokensgard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341901/publications.pdf

Version: 2024-02-01

54 papers

3,736 citations

172457 29 h-index 53 g-index

54 all docs 54 docs citations

54 times ranked

4693 citing authors

#	Article	IF	CITATIONS
1	Role of Microglia in Central Nervous System Infections. Clinical Microbiology Reviews, 2004, 17, 942-964.	13.6	590
2	Neuropathogenesis of Congenital Cytomegalovirus Infection: Disease Mechanisms and Prospects for Intervention. Clinical Microbiology Reviews, 2009, 22, 99-126.	13.6	409
3	Cutting Edge: TLR2-Mediated Proinflammatory Cytokine and Chemokine Production by Microglial Cells in Response to Herpes Simplex Virus. Journal of Immunology, 2005, 175, 4189-4193.	0.8	226
4	Synthetic cannabinoid WIN55,212â€2 inhibits generation of inflammatory mediators by ILâ€1βâ€stimulated human astrocytes. Glia, 2005, 49, 211-219.	4.9	215
5	Robust expression of TNFa, IL-1ß, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. Journal of NeuroVirology, 2001, 7, 208-219.	2.1	167
6	Toll-like Receptors in Defense and Damage of the Central Nervous System. Journal of Neurolmmune Pharmacology, 2007, 2, 297-312.	4.1	141
7	Prolonged Microglial Cell Activation and Lymphocyte Infiltration following Experimental Herpes Encephalitis. Journal of Immunology, 2008, 181, 6417-6426.	0.8	132
8	Differential responses of human brain cells to West Nile virus infection. Journal of NeuroVirology, 2005, 11, 512-524.	2.1	126
9	Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: Antiviral implications. Journal of NeuroVirology, 2001, 7, 135-147.	2.1	95
10	Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Research, 2006, 121, 1-10.	2.2	88
11	Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. Journal of Neuroinflammation, 2010, 7, 35.	7.2	86
12	CXCL10 Production from Cytomegalovirus-Stimulated Microglia Is Regulated by both Human and Viral Interleukin-10. Journal of Virology, 2003, 77, 4502-4515.	3.4	85
13	Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. Journal of Neuroinflammation, 2011, 8, 123.	7.2	80
14	Cytomegalovirus-induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice. Journal of NeuroVirology, 2011, 17, 201-211.	2.1	75
15	High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells. Developmental Brain Research, 2004, 152, 159-169.	1.7	69
16	Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. Journal of NeuroVirology, 2008, 14, 229-238.	2.1	69
17	Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia. Glia, 2004, 47, 358-366.	4.9	64
18	Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. Journal of Neuroscience Research, 2005, 82, 839-850.	2.9	64

#	Article	IF	CITATIONS
19	Chronic Cortical and Subcortical Pathology with Associated Neurological Deficits Ensuing Experimental Herpes Encephalitis. Brain Pathology, 2010, 20, 738-750.	4.1	63
20	Glial cells suppress postencephalitic CD8 ⁺ T lymphocytes through PD‣1. Glia, 2014, 62, 1582-1594.	4.9	58
21	Modulation of Experimental Herpes Encephalitis-Associated Neurotoxicity through Sulforaphane Treatment. PLoS ONE, 2012, 7, e36216.	2.5	56
22	Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain. PLoS ONE, 2011, 6, e16211.	2.5	56
23	The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. Journal of Neuroinflammation, 2017, 14, 82.	7.2	51
24	Decreased Cytomegalovirus Expression Following Proinflammatory Cytokine Treatment of Primary Human Astrocytes. Journal of Immunology, 2000, 164, 926-933.	0.8	44
25	Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. Journal of Neuroinflammation, 2007, 4, $11.$	7.2	44
26	Memory T cells persisting in the brain following MCMV infection induce long-term microglial activation via interferon-l ³ . Journal of NeuroVirology, 2011, 17, 424-437.	2.1	44
27	Intracerebral infection with murine cytomegalovirus induces CXCL10 and is restricted by adoptive transfer of splenocytes. Journal of NeuroVirology, 2004, 10, 152-162.	2.1	34
28	Tregs Modulate Lymphocyte Proliferation, Activation, and Resident-Memory T-Cell Accumulation within the Brain during MCMV Infection. PLoS ONE, 2015, 10, e0145457.	2.5	34
29	Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. Journal of NeuroVirology, 2006, 12, 501-510.	2.1	31
30	Inhibition of Toll-like Receptor Signaling in Primary Murine Microglia. Journal of NeuroImmune Pharmacology, 2008, 3, 5-11.	4.1	30
31	Infiltrating Regulatory B Cells Control Neuroinflammation following Viral Brain Infection. Journal of Immunology, 2014, 193, 6070-6080.	0.8	30
32	Dysregulated interferon-gamma responses during lethal cytomegalovirus brain infection of IL-10-deficient mice. Virus Research, 2007, 130, 96-102.	2.2	28
33	Brain-Resident T Cells Following Viral Infection. Viral Immunology, 2019, 32, 48-54.	1.3	26
34	Activated CD8+ T Lymphocytes Inhibit Neural Stem/Progenitor Cell Proliferation: Role of Interferon-Gamma. PLoS ONE, 2014, 9, e105219.	2.5	25
35	Chronic reactive gliosis following regulatory T cell depletion during acute <scp>MCMV</scp> encephalitis. Glia, 2015, 63, 1982-1996.	4.9	25
36	Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection. Journal of Neuroinflammation, 2016, 13, 114.	7.2	25

#	Article	IF	CITATIONS
37	Modulation of Microglial Cell Fc \hat{l}^3 Receptor Expression Following Viral Brain Infection. Scientific Reports, 2017, 7, 41889.	3.3	25
38	Excess neutrophil infiltration during cytomegalovirus brain infection of interleukin-10-deficient mice. Journal of Neuroimmunology, 2010, 227, 101-110.	2.3	21
39	Reactive glia promote development of CD103 ⁺ CD69 ⁺ CD8 ⁺ Tâ€cells through programmed cell deathâ€ligand 1 (PDâ€L1). Immunity, Inflammation and Disease, 2018, 6, 332-344.	2.7	21
40	Glial Cell Expression of PD-L1. International Journal of Molecular Sciences, 2019, 20, 1677.	4.1	21
41	T cell–mediated restriction of intracerebral murine cytomegalovirus infection displays dependence upon perforin but not interferon-γ. Journal of NeuroVirology, 2005, 11, 274-280.	2.1	20
42	Histoplasma capsulatum yeast phase-specific protein Yps3p induces Toll-like receptor 2 signaling. Journal of Neuroinflammation, 2008, 5, 30.	7.2	20
43	Persistent Humoral Immune Responses in the CNS Limit Recovery of Reactivated Murine Cytomegalovirus. PLoS ONE, 2012, 7, e33143.	2.5	18
44	T-cell reconstitution during murine acquired immunodeficiency syndrome (MAIDS) produces neuroinflammation and mortality in animals harboring opportunistic viral brain infection. Journal of Neuroinflammation, 2013, 10, 98.	7.2	17
45	Antiallodynic Effects of Cannabinoid Receptor 2 (CB ₂ R) Agonists on Retrovirus Infection-Induced Neuropathic Pain. Pain Research and Management, 2019, 2019, 1-12.	1.8	14
46	Differential Cytokine-Induced Responses of Polarized Microglia. Brain Sciences, 2021, 11, 1482.	2.3	14
47	Cytomegalovirus infection and interferon- \hat{l}^3 modulate major histocompatibility complex class I expression on neural stem cells. Journal of NeuroVirology, 2008, 14, 437-447.	2.1	13
48	Recall Responses from Brain-Resident Memory CD8+ T Cells (bTRM) Induce Reactive Gliosis. IScience, 2019, 20, 512-526.	4.1	12
49	Reduced lymphocyte infiltration during cytomegalovirus brain infection of interleukin-10–deficient mice. Journal of NeuroVirology, 2009, 15, 334-342.	2.1	11
50	Human Herpesviruses and Animal Models. , 2013, , 905-925.		7
51	Nitrosative damage during retrovirus infection-induced neuropathic pain. Journal of Neuroinflammation, 2018, 15, 66.	7.2	6
52	Programmed death ligandâ€1 induction restrains the cytotoxic T lymphocyte response against microglia. Glia, 2021, 69, 858-871.	4.9	4
53	Dysregulated Microglial Cell Activation and Proliferation Following Repeated Antigen Stimulation. Frontiers in Cellular Neuroscience, 2021, 15, 686340.	3.7	4
54	Impairment in neurocognitive function following experimental neonatal guinea pig cytomegalovirus infection. Pediatric Research, 2021, 89, 838-845.	2.3	3