
Willem Takken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341840/publications.pdf Version: 2024-02-01

WILLEM TAKKEN

#	Article	IF	CITATIONS
1	ODOR-MEDIATED BEHAVIOR OF AFROTROPICAL MALARIA MOSQUITOES. Annual Review of Entomology, 1999, 44, 131-157.	11.8	579
2	Host Preferences of Blood-Feeding Mosquitoes. Annual Review of Entomology, 2013, 58, 433-453.	11.8	471
3	Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae. Current Biology, 2007, 17, 1533-1544.	3.9	314
4	Spatially variable risk factors for malaria in a geographically heterogeneous landscape, western Kenya: an explorative study. Malaria Journal, 2016, 15, 1.	2.3	255
5	Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.	2.5	208
6	Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemical Senses, 2005, 30, 145-152.	2.0	181
7	Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malaria Journal, 2010, 9, 292.	2.3	133
8	Do insecticide-treated bednets have an effect on malaria vectors?. Tropical Medicine and International Health, 2002, 7, 1022-1030.	2.3	131
9	Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE, 2010, 5, e15829.	2.5	128
10	Cultured skin microbiota attracts malaria mosquitoes. Malaria Journal, 2009, 8, 302.	2.3	120
11	Malaria vector control: current and future strategies. Trends in Parasitology, 2009, 25, 101-104.	3.3	113
12	A Novel Synthetic Odorant Blend for Trapping of Malaria and Other African Mosquito Species. Journal of Chemical Ecology, 2012, 38, 235-244.	1.8	109
13	Sweaty skin: an invitation to bite?. Trends in Parasitology, 2011, 27, 143-148.	3.3	105
14	<i>Plasmodium</i> -associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4209-E4218.	7.1	105
15	Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites and Vectors, 2016, 9, 97.	2.5	101
16	Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasites and Vectors, 2013, 6, 345.	2.5	100
17	The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. Lancet, The, 2016, 388, 1193-1201.	13.7	91
18	Differential responses of mosquito sibling species Anopheles arabiensis and An. quadriannulatusto carbon dioxide, a man or a calf. Medical and Veterinary Entomology, 1998, 12, 136-140.	1.5	82

Willem Takken

#	Article	IF	CITATIONS
19	A 3D Analysis of Flight Behavior of Anopheles gambiae sensu stricto Malaria Mosquitoes in Response to Human Odor and Heat. PLoS ONE, 2013, 8, e62995.	2.5	79
20	Lessons from Agriculture for the Sustainable Management of Malaria Vectors. PLoS Medicine, 2012, 9, e1001262.	8.4	73
21	Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats. Malaria Journal, 2003, 2, 20.	2.3	59
22	Selection of biting sites on a human host by Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus. Entomologia Experimentalis Et Applicata, 1998, 87, 295-300.	1.4	58
23	Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites and Vectors, 2015, 8, 176.	2.5	57
24	The phenology and population dynamics of Culicoides spp. in different ecosystems in The Netherlands. Preventive Veterinary Medicine, 2008, 87, 41-54.	1.9	56
25	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	51
26	Advances in methods for colour marking of mosquitoes. Parasites and Vectors, 2013, 6, 200.	2.5	51
27	Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: a review. Parasites and Vectors, 2015, 8, 643.	2.5	50
28	Effect of human odours and positioning of CO ₂ release point on trap catches of the malaria mosquito <i>Anopheles gambiae sensu stricto </i> in an olfactometer. Physiological Entomology, 2008, 33, 116-122.	1.5	48
29	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	47
30	Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Scientific Reports, 2016, 6, 27141.	3.3	43
31	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infection, Genetics and Evolution, 2013, 18, 87-93.	2.3	41
32	Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites and Vectors, 2014, 7, 580.	2.5	38
33	Mosquito host preferences affect their response to synthetic and natural odour blends. Malaria Journal, 2015, 14, 133.	2.3	36
34	Chemical signaling in mosquito–host interactions: the role of human skin microbiota. Current Opinion in Insect Science, 2017, 20, 68-74.	4.4	33
35	Population structure of the malaria vector Anopheles funestus (Diptera: Culicidae) in Madagascar and Comoros. Acta Tropica, 2006, 97, 292-300.	2.0	25
36	Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. Journal of Experimental Biology, 2018, 221, .	1.7	24

WILLEM TAKKEN

#	Article	IF	CITATIONS
37	The Influence of Larval Stage and Density on Oviposition Site-Selection Behavior of the Afrotropical Malaria Mosquito Anopheles coluzzii (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57, 657-666.	1.8	23
38	Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology, 2020, 45, 155-179.	1.0	23
39	Shading by Napier Grass Reduces Malaria Vector Larvae in Natural Habitats in Western Kenya Highlands. EcoHealth, 2010, 7, 485-497.	2.0	21
40	A citizen science approach for malaria mosquito surveillance and control in Rwanda. Njas - Wageningen Journal of Life Sciences, 2018, 86-87, 101-110.	7.7	20
41	Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda. Acta Tropica, 2018, 182, 149-157.	2.0	19
42	Chemical Mediation of Oviposition by Anopheles Mosquitoes: a Push-Pull System Driven by Volatiles Associated with Larval Stages. Journal of Chemical Ecology, 2020, 46, 397-409.	1.8	19
43	Effects of fungal infection on feeding and survival of Anopheles gambiae (Diptera: Culicidae) on plant sugars. Parasites and Vectors, 2015, 8, 35.	2.5	16
44	Absence of Close-Range Excitorepellent Effects in Malaria Mosquitoes Exposed to Deltamethrin-Treated Bed Nets. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1124-1132.	1.4	15
45	Innovative tools and OpenHDS for health and demographic surveillance on Rusinga Island, Kenya. BMC Research Notes, 2015, 8, 397.	1.4	15
46	Tracking the mutual shaping of the technical and social dimensions of solar-powered mosquito trapping systems (SMoTS) for malaria control on Rusinga Island, western Kenya. Parasites and Vectors, 2014, 7, 523.	2.5	12
47	A <i>Borrelia afzelii</i> Infection Increases Larval Tick Burden on <i>Myodes glareolus</i> (Rodentia:) Tj ETQq1 1 Entomology, 2017, 54, tjw157.	0.784314 1.8	rgBT /Overloc 12
48	Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Tropica, 2019, 197, 105059.	2.0	12
49	Co-Designing a Citizen Science Program for Malaria Control in Rwanda. Sustainability, 2019, 11, 7012.	3.2	11
50	Effect of insecticide-treated bed nets on house-entry by malaria mosquitoes: The flight response recorded in a semi-field study in Kenya. Acta Tropica, 2017, 172, 180-185.	2.0	10
51	Citizen science for monitoring the spatial and temporal dynamics of malaria vectors in relation to environmental risk factors in Ruhuha, Rwanda. Malaria Journal, 2021, 20, 453.	2.3	10
52	Characterisation of anopheline larval habitats in southern Malawi. Acta Tropica, 2020, 210, 105558.	2.0	9
53	Species and sex-specific chemosensory gene expression in Anopheles coluzzii and An. quadriannulatus antennae. Parasites and Vectors, 2020, 13, 212.	2.5	6

#	Article	IF	CITATIONS
55	A handmade trap for malaria mosquito surveillance by citizens in Rwanda. PLoS ONE, 2022, 17, e0266714.	2.5	4
56	Community-based house improvement for malaria control in southern Malawi: Stakeholder perceptions, experiences, and acceptability. PLOS Global Public Health, 2022, 2, e0000627.	1.6	4
57	Synergism between nonane and emanations from soil as cues in ovipositionâ€site selection of natural populations of Anopheles gambiae and Culex quinquefasciatus. Malaria Journal, 2021, 20, 52.	2.3	3