Ian M Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3340190/publications.pdf

Version: 2024-02-01

		236925	265206
55	1,836	25	42
papers	citations	h-index	g-index
57	57	57	2224
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Investigation of Metabolic Resistance to Soybean Aphid (Aphis glycines Matsumura) Feeding in Soybean Cultivars. Insects, 2022, 13, 356.	2.2	1
2	Proteomic Analyses Detect Higher Expression of C-Type Lectins in Imidacloprid-Resistant Colorado Potato Beetle Leptinotarsa decemlineata Say. Insects, 2021, 12, 3.	2.2	5
3	Soybean (Glycine max L Merr) host-plant defenses and resistance to the two-spotted spider mite (Tetranychus urticae Koch). PLoS ONE, 2021, 16, e0258198.	2.5	3
4	Insecticide resistance monitoring in whitefly (Bemisia tabaci) (Hemiptera: Aleyrodidae) in Oman. Journal of Asia-Pacific Entomology, 2020, 23, 1248-1254.	0.9	8
5	Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pesticide Biochemistry and Physiology, 2020, 170, 104677.	3.6	17
6	Non-target Effects of Hyperthermostable α-Amylase Transgenic Nicotiana tabacum in the Laboratory and the Field. Frontiers in Plant Science, 2019, 10, 878.	3.6	0
7	Host plant defenses of black (Solanum nigrum L.) and red nightshade (Solanum villosum Mill.) against specialist Solanaceae herbivore Leptinotarsa decemlineata (Say). Archives of Insect Biochemistry and Physiology, 2019, 101, e21550.	1.5	3
8	The Buckwheat Effect: A Biopesticide for Wireworm?. Journal of Economic Entomology, 2019, 112, 625-632.	1.8	8
9	The Antioxidant and Enzyme Inhibitory Activity of Balsam Fir (Abies balsamea (L.) Mill.) Bark Solvent Extracts and Pyrolysis Oil. Waste and Biomass Valorization, 2019, 10, 3295-3306.	3.4	3
10	Application of Novel Pyrolysis Reactor Technology to Concentrate Bio-oil Components with Antioxidant Activity from Tobacco, Tomato and Coffee Ground Biomass. Waste and Biomass Valorization, 2018, 9, 1607-1617.	3.4	10
11	A two-dimensional pyrolysis process to concentrate nicotine during tobacco leaf bio-oil production. Industrial Crops and Products, 2018, 124, 136-141.	5.2	12
12	Laboratory studies of insecticide efficacy and resistance in <i>Drosophila suzukii</i> (Matsumura) (Diptera: Drosophilidae) populations from British Columbia, Canada. Pest Management Science, 2017, 73, 130-137.	3.4	59
13	Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni HÃ $\frac{1}{4}$ bner (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 2017, 141, 9-17.	3.6	4
14	Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Scientific Reports, 2017, 7, 1762.	3.3	101
15	Abomasal dysfunction and cellular and mucin changes during infection of sheep with larval or adult Teladorsagia circumcincta. PLoS ONE, 2017, 12, e0186752.	2.5	6
16	Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 860-867.	1.5	5
17	Repellent and Attractive Effects of \hat{l}_{\pm} , \hat{l}^2 -, and Dihydro- \hat{l}^2 - lonone to Generalist and Specialist Herbivores. Journal of Chemical Ecology, 2016, 42, 107-117.	1.8	45
18	Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pesticide Biochemistry and Physiology, 2016, 127, 1-7.	3.6	30

#	Article	IF	Citations
19	In vivo extraction of volatile organic compounds (VOCs) from Micro-Tom tomato flowers with multiple solid phase microextraction (SPME) fibers. Canadian Journal of Chemistry, 2015, 93, 143-150.	1.1	3
20	Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves. Journal of Analytical and Applied Pyrolysis, 2015, 112, 80-87.	5.5	12
21	Insecticidal properties of pyrolysis bio-oil from greenhouse tomato residue biomass. Journal of Analytical and Applied Pyrolysis, 2015, 112, 333-340.	5.5	34
22	Susceptibility in field populations of codling moth, <i>Cydia pomonella </i> (L.) (Lepidoptera:) Tj ETQq0 0 0 rgBT / CSCIENCE, 2015, 71, 234-242.	verlock 10 3.4	O Tf 50 627 28
23	Insecticidal and anti-microbial activity of bio-oil derived from fast pyrolysis of lignin, cellulose, and hemicellulose. Journal of Pest Science, 2015, 88, 171-179.	3.7	38
24	Insecticide resistance and crossâ€resistance development in Colorado potato beetle <i>Leptinotarsa decemlineata</i> Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Management Science, 2015, 71, 712-721.	3.4	49
25	Dillapiol: A Pyrethrum Synergist for Control of the Colorado Potato Beetle. Journal of Economic Entomology, 2014, 107, 797-805.	1.8	27
26	INHIBITION OF INSECT GLUTATHIONE Sâ€TRANSFERASE (GST) BY CONIFER EXTRACTS. Archives of Insect Biochemistry and Physiology, 2014, 87, 234-249.	1.5	33
27	Insecticidal Activity of Bio-oil from the Pyrolysis of Straw from <i>Brassica</i> spp Journal of Agricultural and Food Chemistry, 2014, 62, 3610-3618.	5.2	23
28	Toxicity of lignin, cellulose and hemicellulose-pyrolyzed bio-oil combinations: Estimating pesticide resources. Journal of Analytical and Applied Pyrolysis, 2013, 99, 211-216.	5.5	29
29	Costs of Insecticide Resistance in <i>Cydia pomonella</i> (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2012, 105, 872-877.	1.8	11
30	Extracts of Canadian First Nations Medicinal Plants, Used as Natural Products, Inhibit Neisseria gonorrhoeae Isolates With Different Antibiotic Resistance Profiles. Sexually Transmitted Diseases, 2011, 38, 667-671.	1.7	30
31	Environmental characterization of surface runoff from three highway sites in Southern Ontario, Canada: 2. Toxicology. Water Quality Research Journal of Canada, 2011, 46, 121-136.	2.7	17
32	Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. Journal of Analytical and Applied Pyrolysis, 2011, 90, 224-231.	5.5	97
33	Environmental characterization of surface runoff from three highway sites in Southern Ontario, Canada: 1. Chemistry. Water Quality Research Journal of Canada, 2011, 46, 110-120.	2.7	15
34	Response of a Generalist Herbivore Trichoplusia ni to Jasmonate-Mediated Induced Defense in Tomato. Journal of Chemical Ecology, 2010, 36, 490-499.	1.8	51
35	Bioenergy II: Characterization of the Pesticide Properties of Tobacco Bio-Oil. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	14
36	Experimental Investigations into the Insecticidal, Fungicidal, and Bactericidal Properties of Pyrolysis Bio-oil from Tobacco Leaves Using a Fluidized Bed Pilot Plant. Industrial & Engineering Chemistry Research, 2010, 49, 10074-10079.	3.7	67

#	Article	IF	CITATIONS
37	Career decision making in medical school: how medical students choose in the early years. Medical Teacher, 2008, 30, 543-545.	1.8	1
38	Efficacy of Piper nigrum (Piperaceae) extract for control of insect defoliators of forest and ornamental trees. Canadian Entomologist, 2007, 139, 513-522.	0.8	15
39	In vitro activity of uva-ursi against cytochromeÂP450 isoenzymes and P-glycoproteinThis article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health Products Canadian Journal of Physiology and Pharmacology, 2007, 85, 1099-1107.	1.4	9
40	A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews, 2007, 7, 65-75.	6.5	173
41	Alkaloids fromEschscholziacalifornicaand Their Capacity to Inhibit Binding of [3H]8-Hydroxy-2-(di-N-propylamino)tetralin to 5-HT1AReceptors in Vitro#. Journal of Natural Products, 2006, 69, 432-435.	3.0	30
42	Gene Expression Profiles of Drosophila melanogaster Exposed to an Insecticidal Extract of Piper nigrum. Journal of Agricultural and Food Chemistry, 2006, 54, 1289-1295.	5.2	33
43	The Inhibition of Human Cytochrome P450 by Ethanol Extracts of North American Botanicals. Pharmaceutical Biology, 2006, 44, 315-327.	2.9	25
44	The effect of a synergistic concentration of a Piper nigrum extract used in conjunction with pyrethrum upon gene expression in Drosophila melanogaster. Insect Molecular Biology, 2006, 15, 329-339.	2.0	33
45	Efficacy of Botanical Insecticides from <i>Piper</i> Species (Piperaceae) Extracts For Control of European Chafer (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 2005, 98, 845-855.	1.8	39
46	Analysis of Piperaceae Germplasm by HPLC and LCMS:Â A Method for Isolating and Identifying Unsaturated Amides fromPiperspp Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 1907-1913.	5.2	64
47	Efficacy of Piper (Piperaceae) Extracts for Control of Common Home and Garden Insect Pests. Journal of Economic Entomology, 2004, 97, 1390-1403.	1.8	51
48	Botanical insecticides for controlling agricultural pests: Piperamides and the Colorado potato beetleLeptinotarsa decemlineatasay (Coleoptera: Chrysomelidae). Archives of Insect Biochemistry and Physiology, 2003, 54, 212-225.	1.5	109
49	Insecticidal activity of Piper tuberculatum Jacq. extracts: synergistic interaction of piperamides. Agricultural and Forest Entomology, 2002, 4, 137-144.	1.3	77
50	The Toxicity of a Neem Insecticide to Populations of Culicidae and Other Aquatic Invertebrates as Assessed in In Situ Microcosms. Archives of Environmental Contamination and Toxicology, 2000, 39, 329-336.	4.1	27
51	The Toxicity of Margosan-O, a Product of Neem Seeds, to Selected Target and Nontarget Aquatic Invertebrates. Archives of Environmental Contamination and Toxicology, 1998, 35, 426-431.	4.1	23
52	Hepatic mixed function oxygenase activity and vitellogenin induction in fish following a treatment of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM). Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 2078-2086.	1.4	12
53	Use of an mfoâ€directed toxicity identification evaluation to isolate and characterize bioactive impurities from a lampricide formulation. Environmental Toxicology and Chemistry, 1996, 15, 894-905.	4.3	21
54	USE OF AN MFO-DIRECTED TOXICITY IDENTIFICATION EVALUATION TO ISOLATE AND CHARACTERIZE BIOACTIVE IMPURITIES FROM A LAMPRICIDE FORMULATION. Environmental Toxicology and Chemistry, 1996, 15, 894.	4.3	1

#	Article	IF	CITATIONS
55	Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquatic Toxicology, 1990, 18, 101-113.	4.0	194