Wu Zhiqiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339859/publications.pdf

Version: 2024-02-01

37 papers	2,242 citations	19 h-index	330143 37 g-index
38	38	38	3139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1–2 trial. Leukemia, 2022, 36, 189-196.	7.2	45
2	CRISPR/Cas9 genome-edited universal CAR T cells in patients with relapsed/refractory lymphoma. Blood Advances, 2022, 6, 2695-2699.	5.2	11
3	Inducing immunogenic cell death in immuno-oncological therapies. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2022, 34, 1-10.	2.2	8
4	Identification of NOXA as a pivotal regulator of resistance to CAR T-cell therapy in B-cell malignancies. Signal Transduction and Targeted Therapy, 2022, 7, 98.	17.1	19
5	CD58 loss in tumor cells confers functional impairment of CAR TÂcells. Blood Advances, 2022, 6, 5844-5856.	5. 2	20
6	Adaptive T cell immunotherapy in cancer. Science China Life Sciences, 2021, 64, 363-371.	4.9	13
7	Clinical development of CAR T cell therapy in China: 2020 update. Cellular and Molecular Immunology, 2021, 18, 792-804.	10.5	50
8	Mutant B2Mâ€HLAâ€E and B2Mâ€HLAâ€G fusion proteins protects universal chimeric antigen receptorâ€modifie T cells from allogeneic NK cellâ€mediated lysis. European Journal of Immunology, 2021, 51, 2513-2521.	:d _{2.9}	15
9	Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nature Communications, 2021, 12, 409.	12.8	109
10	Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment. Cellular and Molecular Immunology, 2020, 17, 430-432.	10.5	26
11	Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial. Cytotherapy, 2020, 22, 573-580.	0.7	77
12	The Role of Posttranslational Modifications in DNA Repair. BioMed Research International, 2020, 2020, 1-13.	1.9	3
13	Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Frontiers of Medicine, 2020, 14, 726-745.	3.4	9
14	Impact of Age on the Efficacy of Immune Checkpoint Inhibitor-Based Combination Therapy for Non-small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 2020, 10, 1671.	2.8	25
15	Case Report: Low-Dose Decitabine Plus Anti-PD-1 Inhibitor Camrelizumab for Previously Treated Advanced Metastatic Non-Small Cell Lung Cancer. Frontiers in Oncology, 2020, 10, 558572.	2.8	12
16	Co-infusion of high-dose haploidentical donor cells and CD19-targeted CART cells achieves complete remission, successful donor engraftment and significant CART amplification in advanced ALL. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092760.	3.2	7
17	Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B cell lymphoma. Blood, 2020, 136, 1632-1644.	1.4	119
18	Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2020, 13, 30.	17.0	187

#	Article	IF	Citations
19	PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. , 2019, 7, 209.		73
20	Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells. Journal of Genetics and Genomics, 2019, 46, 367-377.	3.9	29
21	Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. Journal of Hematology and Oncology, 2019, 12, 57.	17.0	46
22	CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncolmmunology, 2018, 7, e1440169.	4.6	219
23	Phase Ib/II study of safety and efficacy of lowâ€dose decitabineâ€primed chemoimmunotherapy in patients with drugâ€resistant relapsed/refractory alimentary tract cancer. International Journal of Cancer, 2018, 143, 1530-1540.	5.1	21
24	Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein and Cell, 2018, 9, 838-847.	11.0	196
25	Phase I Study of Chimeric Antigen Receptor–Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clinical Cancer Research, 2018, 24, 1277-1286.	7.0	159
26	Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Science China Life Sciences, 2018, 61, 1320-1332.	4.9	11
27	DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1. Journal of Genetics and Genomics, 2018, 45, 205-214.	3.9	30
28	New development in CAR-T cell therapy. Journal of Hematology and Oncology, 2017, 10, 53.	17.0	282
29	Genetic and Methylation-Induced Loss of miR-181a2/181b2 within chr9q33.3 Facilitates Tumor Growth of Cervical Cancer through the PIK3R3/Akt/FoxO Signaling Pathway. Clinical Cancer Research, 2017, 23, 575-586.	7.0	28
30	Blockade of the LRP16-PKR-NF- \hat{l}^0 B signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy. ELife, 2017, 6, .	6.0	19
31	Methylationâ€induced loss of <scp>miR</scp> â€484 in microsatelliteâ€unstable colorectal cancer promotes both viability and <scp>IL</scp> â€8 production via <scp>CD137L</scp> . Journal of Pathology, 2015, 236, 165-174.	4.5	37
32	An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Research, 2015, 43, 3167-3179.	14.5	19
33	CX3CR1(+) B Cells Show Immune Suppressor Properties. Journal of Biological Chemistry, 2014, 289, 22630-22635.	3.4	10
34	IncRNAs: Insights into their function and mechanics in underlying disorders. Mutation Research - Reviews in Mutation Research, 2014, 762, 1-21.	5 . 5	196
35	Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Human Molecular Genetics, 2014, 23, 6008-6021.	2.9	59
36	Antigen specific immunotherapy generates CD27+ CD35+ tolerogenic dendritic cells. Cellular Immunology, 2013, 283, 75-80.	3.0	12

#	Article	IF	CITATIONS
37	LRP16 Integrates into NF-κB Transcriptional Complex and Is Required for Its Functional Activation. PLoS ONE, 2011, 6, e18157.	2.5	32