List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339741/publications.pdf Version: 2024-02-01

WAITED LETZ

#	Article	IF	CITATIONS
1	Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive countryâ€level occurrence database. Global Ecology and Biogeography, 2022, 31, 830-839.	2.7	22
2	Expert range maps of global mammal distributions harmonised to three taxonomic authorities. Journal of Biogeography, 2022, 49, 979-992.	1.4	41
3	Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117297119.	3.3	312
4	A hierarchical inventory of the world's mountains for global comparative mountain science. Scientific Data, 2022, 9, 149.	2.4	20
5	Biological Earth observation with animal sensors. Trends in Ecology and Evolution, 2022, 37, 293-298.	4.2	49
6	Animal tracking moves community ecology: Opportunities and challenges. Journal of Animal Ecology, 2022, 91, 1334-1344.	1.3	24
7	Include biodiversity representation indicators in area-based conservation targets. Nature Ecology and Evolution, 2022, 6, 123-126.	3.4	29
8	Macroevolutionary dynamics of climatic niche space. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	7
9	Country Compendium of the Global Register of Introduced and Invasive Species. Scientific Data, 2022, 9, .	2.4	15
10	Countryâ€level checklists and occurrences for the world's Odonata (dragonflies and damselflies). Journal of Biogeography, 2022, 49, 1586-1598.	1.4	7
11	Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecology Letters, 2021, 24, 196-207.	3.0	70
12	Continentalâ€scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography, 2021, 44, 640-652.	2.1	16
13	Shortfalls and opportunities in terrestrial vertebrate species discovery. Nature Ecology and Evolution, 2021, 5, 631-639.	3.4	66
14	Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology and Evolution, 2021, 5, 854-862.	3.4	51
15	Toward monitoring forest ecosystem integrity within the postâ€2020 Global Biodiversity Framework. Conservation Letters, 2021, 14, e12822.	2.8	37
16	Molecules and fossils tell distinct yet complementary stories of mammal diversification. Current Biology, 2021, 31, 4195-4206.e3.	1.8	22
17	A unifying framework for quantifying and comparing nâ€dimensional hypervolumes. Methods in Ecology and Evolution, 2021, 12, 1953-1968.	2.2	18
18	Individual environmental niches in mobile organisms. Nature Communications, 2021, 12, 4572.	5.8	26

#	Article	IF	CITATIONS
19	Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biology, 2021, 19, e3001336.	2.6	35
20	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
21	Evolutionary legacies in contemporary tetrapod imperilment. Ecology Letters, 2021, 24, 2464-2476.	3.0	13
22	Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
23	Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Scientific Data, 2021, 8, 307.	2.4	50
24	A cloud-based toolbox for the versatile environmental annotation of biodiversity data. PLoS Biology, 2021, 19, e3001460.	2.6	5
25	Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Environmental Conservation, 2020, 47, 1-6.	0.7	84
26	Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evolutionary Biology, 2020, 20, 81.	3.2	38
27	BILBI: Supporting global biodiversity assessment through high-resolution macroecological modelling. Environmental Modelling and Software, 2020, 132, 104806.	1.9	20
28	Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts. Nature Communications, 2020, 11, 2616.	5.8	59
29	COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology and Evolution, 2020, 4, 1156-1159.	3.4	413
30	Hierarchical multiâ€grain models improve descriptions of species' environmental associations, distribution, and abundance. Ecological Applications, 2020, 30, e02117.	1.8	14
31	Simulation-based reconstruction of global bird migration over the past 50,000 years. Nature Communications, 2020, 11, 801.	5.8	20
32	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
33	Accumulation over evolutionary time as a major cause of biodiversity hotspots in conifers. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191887.	1.2	23
34	Species' range model metadata standards: RMMS. Global Ecology and Biogeography, 2019, 28, 1912-1924.	2.7	18
35	Phylogenetic and Trait-Based Prediction of Extinction Risk for Data-Deficient Amphibians. Current Biology, 2019, 29, 1557-1563.e3.	1.8	124
36	Environment―and traitâ€mediated scaling of tree occupancy in forests worldwide. Global Ecology and Biogeography, 2019, 28, 1155-1167.	2.7	2

#	Article	IF	CITATIONS
37	Beta Diversity Patterns Derived from Island Biogeography Theory. American Naturalist, 2019, 194, E52-E65.	1.0	24
38	Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, 2019, 9, 323-329.	8.1	346
39	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
40	Measure and Reduce the Harm Caused by Biological Invasions. One Earth, 2019, 1, 171-174.	3.6	38
41	Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology, 2019, 17, e3000494.	2.6	659
42	Global elevational diversity and diversification of birds. Nature, 2018, 555, 246-250.	13.7	264
43	Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecological Applications, 2018, 28, 749-760.	1.8	116
44	The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology and Evolution, 2018, 2, 850-858.	3.4	389
45	A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 2018, 5, 180040.	2.4	394
46	Disentangling scale dependencies in species environmental niches and distributions. Ecography, 2018, 41, 1604-1615.	2.1	57
47	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
48	Taxonomic and functional diversity change is scale dependent. Nature Communications, 2018, 9, 2565.	5.8	117
49	The macroecological dynamics of species coexistence in birds. Nature Ecology and Evolution, 2018, 2, 1112-1119.	3.4	44
50	Humboldt Core – toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography, 2018, 41, 713-725.	2.1	41
51	Putting insects on the map: nearâ€global variation in sphingid moth richness along spatial and environmental gradients. Ecography, 2017, 40, 698-708.	2.1	33
52	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	1.9	178
53	Different clades and traits yield similar grassland functional responses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 705-710.	3.3	56
54	Biodiversity Modelling as Part of an Observation System. , 2017, , 239-257.		16

#	Article	IF	CITATIONS
55	Environmental constraints on the compositional and phylogenetic betaâ€diversity of tropical forest snake assemblages. Journal of Animal Ecology, 2017, 86, 1192-1204.	1.3	12
56	Large conservation gains possible for global biodiversity facets. Nature, 2017, 546, 141-144.	13.7	209
57	A global inventory of mountains for bio-geographical applications. Alpine Botany, 2017, 127, 1-15.	1.1	217
58	Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170627.	1.2	44
59	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	3.4	131
60	A general scaling law reveals why the largest animals are not the fastest. Nature Ecology and Evolution, 2017, 1, 1116-1122.	3.4	112
61	A near halfâ€century of temporal change in different facets of avian diversity. Global Change Biology, 2017, 23, 2999-3011.	4.2	67
62	Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography, 2017, 26, 243-258.	2.7	71
63	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	3.1	147
64	Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats. Scientific Reports, 2017, 7, 12705.	1.6	34
65	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
66	Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biology, 2016, 14, e1002415.	2.6	269
67	Range geometry and socioâ€economics dominate speciesâ€level biases in occurrence information. Global Ecology and Biogeography, 2016, 25, 1181-1193.	2.7	61
68	Detecting the Multiple Facets of Biodiversity. Trends in Ecology and Evolution, 2016, 31, 527-538.	4.2	134
69	Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 2016, 204, 23-31.	1.9	337
70	The limits of direct community modeling approaches for broad-scale predictions of ecological assemblage structure. Biological Conservation, 2016, 201, 396-404.	1.9	6
71	Monitoring plant functional diversity from space. Nature Plants, 2016, 2, 16024.	4.7	221
72	Modelâ€based integration of observed and expertâ€based information for assessing the geographic and environmental distribution of freshwater species. Ecography, 2016, 39, 1078-1088.	2.1	34

#	Article	IF	CITATIONS
73	Energetic Constraints on Species Coexistence in Birds. PLoS Biology, 2016, 14, e1002407.	2.6	42
74	Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data, 2015, 2, 150073.	2.4	134
75	A global, remote sensingâ€based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 2015, 24, 1329-1339.	2.7	204
76	Terrestrial animal tracking as an eye on life and planet. Science, 2015, 348, aaa2478.	6.0	1,067
77	Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140016.	1.8	101
78	Using multiâ€ŧimescale methods and satelliteâ€derived land surface temperature for the interpolation of daily maximum air temperature in Oregon. International Journal of Climatology, 2015, 35, 3862-3878.	1.5	32
79	The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios. Global Change Biology, 2015, 21, 2917-2928.	4.2	61
80	Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters, 2015, 18, 563-571.	3.0	128
81	Historical Biogeography Using Species Geographical Ranges. Systematic Biology, 2015, 64, 1059-1073.	2.7	46
82	Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 2015, 6, 8221.	5.8	377
83	On the decline of biodiversity due to area loss. Nature Communications, 2015, 6, 8837.	5.8	69
84	Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography, 2015, 24, 168-179.	2.7	89
85	Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change. PLoS ONE, 2014, 9, e98361.	1.1	38
86	Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology, 2014, 24, 919-930.	1.8	441
87	A global 1â€km consensus landâ€cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 2014, 23, 1031-1045.	2.7	344
88	Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Diversity and Distributions, 2014, 20, 797-812.	1.9	25
89	Dietary guild composition and disaggregation of avian assemblages under climate change. Global Change Biology, 2014, 20, 790-802.	4.2	11
90	Downscaling the environmental associations and spatial patterns of species richness. , 2014, 24, 823-831.		9

#	Article	IF	CITATIONS
91	Systematic land cover bias in Collection 5 MODIS cloud mask and derived products — A global overview. Remote Sensing of Environment, 2014, 141, 149-154.	4.6	47
92	Extinctions and the loss of ecological function in island bird communities. Global Ecology and Biogeography, 2014, 23, 679-688.	2.7	81
93	EltonTraits 1.0: Speciesâ€level foraging attributes of the world's birds and mammals. Ecology, 2014, 95, 2027-2027.	1.5	1,212
94	A 40â€year, continentâ€wide, multispecies assessment of relevant climate predictors for species distribution modelling. Diversity and Distributions, 2014, 20, 1285-1295.	1.9	89
95	An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature. Remote Sensing, 2014, 6, 8639-8670.	1.8	19
96	Vulnerability of terrestrial island vertebrates to projected seaâ€ l evel rise. Global Change Biology, 2013, 19, 2058-2070.	4.2	39
97	Comment on "An Update of Wallace's Zoogeographic Regions of the World― Science, 2013, 341, 343	34 8. 0	54
98	Essential Biodiversity Variables. Science, 2013, 339, 277-278.	6.0	1,150
99	Downscaling of species distribution models: a hierarchical approach. Methods in Ecology and Evolution, 2013, 4, 82-94.	2.2	63
100	Spatial Scaling of Functional Structure in Bird and Mammal Assemblages. American Naturalist, 2013, 181, 464-478.	1.0	47
101	Mapping the biodiversity of tropical insects: species richness and inventory completeness of <scp>A</scp> frican sphingid moths. Clobal Ecology and Biogeography, 2013, 22, 586-595.	2.7	83
102	Bioclimatic and physical characterization of the world's islands. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15307-15312.	3.3	216
103	<scp>PASTIS</scp> : an R package to facilitate phylogenetic assembly with soft taxonomic inferences. Methods in Ecology and Evolution, 2013, 4, 1011-1017.	2.2	92
104	Energetics, lifestyle, and reproduction in birds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10937-10941.	3.3	106
105	Regional Pools and Environmental Controls of Vertebrate Richness. American Naturalist, 2012, 179, 512-523.	1.0	49
106	Universal species–area and endemics–area relationships at continental scales. Nature, 2012, 488, 78-81.	13.7	162
107	Integrating biodiversity distribution knowledge: toward a global map of life. Trends in Ecology and Evolution, 2012, 27, 151-159.	4.2	435
108	The global diversity of birds in space and time. Nature, 2012, 491, 444-448.	13.7	2,740

#	Article	IF	CITATIONS
109	Bird dietary guild richness across latitudes, environments and biogeographic regions. Global Ecology and Biogeography, 2012, 21, 328-340.	2.7	133
110	Global patterns of specialization and coexistence in bird assemblages. Journal of Biogeography, 2012, 39, 193-203.	1.4	80
111	Tracking of climatic niche boundaries under recent climate change. Journal of Animal Ecology, 2012, 81, 914-925.	1.3	129
112	Broadâ€scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 2012, 21, 873-885.	2.7	236
113	Global Gradients in Vertebrate Diversity Predicted by Historical Area-Productivity Dynamics and Contemporary Environment. PLoS Biology, 2012, 10, e1001292.	2.6	233
114	Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 2011, 480, 516-519.	13.7	504
115	Unravelling the structure of species extinction risk for predictive conservation science. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1329-1338.	1.2	187
116	Comparative Methods as a Statistical Fix: The Dangers of Ignoring an Evolutionary Model. American Naturalist, 2011, 178, E10-E17.	1.0	79
117	Phylogenetic conservatism of environmental niches in mammals. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2384-2391.	1.2	123
118	Cross-scale variation in species richness-environment associations. Global Ecology and Biogeography, 2011, 20, 464-474.	2.7	123
119	Conservation biogeography of the US–Mexico border: a transcontinental risk assessment of barriers to animal dispersal. Diversity and Distributions, 2011, 17, 673-687.	1.9	56
120	Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds. Current Biology, 2011, 21, 72-78.	1.8	288
121	Biogeography of body size in Pacific island birds. Ecography, 2010, 33, 369-379.	2.1	35
122	Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography, 2010, 33, 408-419.	2.1	134
123	Lizard community structure along environmental gradients. Journal of Animal Ecology, 2010, 79, 358-365.	1.3	26
124	A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 2010, 37, 2029-2053.	1.4	516
125	Global patterns and predictors of marine biodiversity across taxa. Nature, 2010, 466, 1098-1101.	13.7	1,131
126	Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 2010, 23, 2529-2539.	0.8	170

#	Article	IF	CITATIONS
127	Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3401-3410.	1.2	324
128	Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2271-2280.	1.2	100
129	Avian distributions under climate change: towards improved projections. Journal of Experimental Biology, 2010, 213, 862-869.	0.8	97
130	More than "More Individuals― The Nonequivalence of Area and Energy in the Scaling of Species Richness. American Naturalist, 2010, 176, E50-E65.	1.0	72
131	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	3.0	286
132	Phenotypic population divergence in terrestrial vertebrates at macro scales. Ecology Letters, 2009, 12, 1137-1146.	3.0	17
133	The global distribution of frugivory in birds. Global Ecology and Biogeography, 2009, 18, 150-162.	2.7	125
134	A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9322-9327.	3.3	901
135	Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 21-30.	1.2	181
136	Global associations between terrestrial producer and vertebrate consumer diversity. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 269-278.	1.2	94
137	Disparities between observed and predicted impacts of climate change on winter bird assemblages. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3167-3174.	1.2	65
138	Global diversity of island floras from a macroecological perspective. Ecology Letters, 2008, 11, 116-127.	3.0	256
139	Impact of climate change on migratory birds: community reassembly versus adaptation. Global Ecology and Biogeography, 2008, 17, 38-49.	2.7	42
140	Ecological Correlates and Conservation Implications of Overestimating Species Geographic Ranges. Conservation Biology, 2008, 22, 110-119.	2.4	164
141	Homage to Linnaeus: How many parasites? How many hosts?. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11482-11489.	3.3	551
142	THERMAL AND ENERGETIC CONSTRAINTS ON ECTOTHERM ABUNDANCE: A GLOBAL TEST USING LIZARDS. Ecology, 2008, 89, 48-55.	1.5	51
143	Future battlegrounds for conservation under global change. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1261-1270.	1.2	132
144	Linking global turnover of species and environments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17836-17841.	3.3	247

#	Article	IF	CITATIONS
145	Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds. PLoS ONE, 2008, 3, e3261.	1.1	95
146	The Worldwide Variation in Avian Clutch Size across Species and Space. PLoS Biology, 2008, 6, e303.	2.6	353
147	Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5925-5930.	3.3	1,080
148	Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1167-1173.	1.2	284
149	Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biology, 2007, 5, e157.	2.6	818
150	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	2.1	2,522
151	Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13384-13389.	3.3	551
152	BIOTIC AND ABIOTIC CONTROLS OF ARGENTINE ANT INVASION SUCCESS AT LOCAL AND LANDSCAPE SCALES. Ecology, 2007, 88, 3164-3173.	1.5	76
153	Effects of species' ecology on the accuracy of distribution models. Ecography, 2007, 30, 135-151.	2.1	225
154	Insularity and the determinants of lizard population density. Ecology Letters, 2007, 10, 481-489.	3.0	88
155	Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: the species richness of African birds. Global Ecology and Biogeography, 2007, 16, 657-667.	2.7	52
156	Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions—possibilities and limitations. Ecological Modelling, 2006, 192, 499-522.	1.2	92
157	Phenotypic plasticity in the scaling of avian basal metabolic rate. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 931-937.	1.2	145
158	The broad-scale ecology of energy expenditure of endotherms. Ecology Letters, 2005, 8, 310-318.	3.0	171
159	Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 2005, 14, 97-98.	2.7	93
160	Energetic determinants of abundance in winter landbird communities. Ecology Letters, 2004, 7, 532-537.	3.0	84
161	The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters, 2004, 7, 1180-1191.	3.0	304
162	The effects of species' range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?. Journal of Applied Ecology, 2004, 41, 811-823.	1.9	441

#	Article	IF	CITATIONS
163	The Scaling of Animal Space Use. Science, 2004, 306, 266-268.	6.0	441
164	Geographic Range Size and Determinants of Avian Species Richness. Science, 2002, 297, 1548-1551.	6.0	572
165	Environmental correlates of badger social spacing across Europe. Journal of Biogeography, 2002, 29, 411-425.	1.4	92
166	Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5661-5666.	3.3	211