
Daniel Rauh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small-molecule inhibition of APT1 affects Ras localization and signaling. Nature Chemical Biology, 2010, 6, 449-456.	8.0	353
2	Chemogenomic Profiling Provides Insights into the Limited Activity of Irreversible EGFR Inhibitors in Tumor Cells Expressing the T790M EGFR Resistance Mutation. Cancer Research, 2010, 70, 868-874.	0.9	191
3	Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature Chemical Biology, 2007, 3, 229-238.	8.0	190
4	ALK Mutations Conferring Differential Resistance to Structurally Diverse ALK Inhibitors. Clinical Cancer Research, 2011, 17, 7394-7401.	7.0	179
5	Strategies for the Selective Regulation of Kinases with Allosteric Modulators: Exploiting Exclusive Structural Features. ACS Chemical Biology, 2013, 8, 58-70.	3.4	170
6	Development of a Fluorescent-Tagged Kinase Assay System for the Detection and Characterization of Allosteric Kinase Inhibitors. Journal of the American Chemical Society, 2009, 131, 13286-13296.	13.7	140
7	Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nature Chemical Biology, 2012, 8, 141-143.	8.0	109
8	Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nature Communications, 2018, 9, 4655.	12.8	107
9	A Synergistic Interaction between Chk1- and MK2 Inhibitors in KRAS-Mutant Cancer. Cell, 2015, 162, 146-159.	28.9	100
10	KRasG12C inhibitors in clinical trials: a short historical perspective. RSC Medicinal Chemistry, 2020, 11, 760-770.	3.9	95
11	Cell-Autonomous and Non–Cell-Autonomous Mechanisms of Transformation by Amplified <i>FGFR1</i> in Lung Cancer. Cancer Discovery, 2014, 4, 246-257.	9.4	93
12	Targeting Drug Resistance in EGFR with Covalent Inhibitors: A Structure-Based Design Approach. Journal of Medicinal Chemistry, 2015, 58, 6844-6863.	6.4	92
13	Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR. Bioorganic and Medicinal Chemistry, 2008, 16, 3482-3488.	3.0	88
14	Covalentâ€Allosteric Kinase Inhibitors. Angewandte Chemie - International Edition, 2015, 54, 10313-10316.	13.8	87
15	High-Throughput Screening To Identify Inhibitors Which Stabilize Inactive Kinase Conformations in p38î±. Journal of the American Chemical Society, 2009, 131, 18478-18488.	13.7	80
16	Donated chemical probes for open science. ELife, 2018, 7, .	6.0	80
17	Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site. Journal of Medicinal Chemistry, 2017, 60, 5613-5637.	6.4	77
18	Hope and Disappointment: Covalent Inhibitors to Overcome Drug Resistance in Non-Small Cell Lung Cancer. ACS Medicinal Chemistry Letters, 2016, 7, 2-5.	2.8	75

#	Article	IF	CITATIONS
19	Proteus in the World of Proteins: Conformational Changes in Protein Kinases. Archiv Der Pharmazie, 2010, 343, 193-206.	4.1	72
20	Epidermal Growth Factor Receptor (EGFR) Signaling and Covalent EGFR Inhibition in Lung Cancer. Journal of Clinical Oncology, 2012, 30, 3417-3420.	1.6	61
21	Preclinical Efficacy of Covalent-Allosteric AKT Inhibitor Borussertib in Combination with Trametinib in <i>KRAS</i> -Mutant Pancreatic and Colorectal Cancer. Cancer Research, 2019, 79, 2367-2378.	0.9	60
22	C797S Resistance: The Undruggable EGFR Mutation in Non-Small Cell Lung Cancer?. ACS Medicinal Chemistry Letters, 2018, 9, 779-782.	2.8	56
23	Insight into the Inhibition of Drugâ€Resistant Mutants of the Receptor Tyrosine Kinase EGFR. Angewandte Chemie - International Edition, 2016, 55, 10909-10912.	13.8	54
24	2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach. Photochemical and Photobiological Sciences, 2019, 18, 1398-1407.	2.9	53
25	Fluorophore Labeling of the Glycine-Rich Loop as a Method of Identifying Inhibitors That Bind to Active and Inactive Kinase Conformations. Journal of the American Chemical Society, 2010, 132, 4152-4160.	13.7	50
26	Structural and chemical insights into the covalent-allosteric inhibition of the protein kinase Akt. Chemical Science, 2019, 10, 3573-3585.	7.4	49
27	Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discovery, 2021, 11, 108-125.	9.4	47
28	Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angewandte Chemie - International Edition, 2017, 56, 8153-8157.	13.8	45
29	Covalentâ€Allosteric Inhibitors to Achieve Akt Isoformâ€ S electivity. Angewandte Chemie - International Edition, 2019, 58, 18823-18829.	13.8	44
30	Indazole-Based Covalent Inhibitors To Target Drug-Resistant Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 2017, 60, 2361-2372.	6.4	43
31	Characterization of Irreversible Kinase Inhibitors by Directly Detecting Covalent Bond Formation: A Tool for Dissecting Kinase Drug Resistance. ChemBioChem, 2010, 11, 2557-2566.	2.6	40
32	Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Reports, 2017, 20, 2833-2845.	6.4	40
33	Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorganic and Medicinal Chemistry, 2015, 23, 2767-2780.	3.0	37
34	Targeting the Hinge Glycine Flip and the Activation Loop: Novel Approach to Potent p38α Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 7862-7874.	6.4	36
35	Lessons To Be Learned: The Molecular Basis of Kinaseâ€Targeted Therapies and Drug Resistance in Nonâ€Small Cell Lung Cancer. Angewandte Chemie - International Edition, 2018, 57, 2307-2313.	13.8	36
36	Optimized 4,5-Diarylimidazoles as Potent/Selective Inhibitors of Protein Kinase CK1δ and Their Structural Relation to p38α MAPK. Molecules, 2017, 22, 522.	3.8	35

#	Article	IF	CITATIONS
37	Direct Binding Assay for the Detection of Type IV Allosteric Inhibitors of Abl. Journal of the American Chemical Society, 2012, 134, 9138-9141.	13.7	34
38	Selective Detection of Allosteric Phosphatase Inhibitors. Journal of the American Chemical Society, 2013, 135, 6838-6841.	13.7	33
39	Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38î± Kinase. PLoS ONE, 2012, 7, e39713.	2.5	32
40	Dibenzosuberones as p38 Mitogen-Activated Protein Kinase Inhibitors with Low ATP Competitiveness and Outstanding Whole Blood Activity. Journal of Medicinal Chemistry, 2013, 56, 241-253.	6.4	31
41	Spotlight on AKT: Current Therapeutic Challenges. ACS Medicinal Chemistry Letters, 2020, 11, 225-227.	2.8	30
42	Structure-based design, synthesis and biological evaluation of N-pyrazole, N′-thiazole urea inhibitors of MAP kinase p38α. European Journal of Medicinal Chemistry, 2012, 48, 1-15.	5.5	29
43	Augmented Reality in Scientific Publications—Taking the Visualization of 3D Structures to the Next Level. ACS Chemical Biology, 2018, 13, 496-499.	3.4	28
44	A novel scaffold for EGFR inhibition: Introducing N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives. Scientific Reports, 2019, 9, 14.	3.3	28
45	Displacement Assay for the Detection of Stabilizers of Inactive Kinase Conformations. Journal of Medicinal Chemistry, 2010, 53, 357-367.	6.4	26
46	Metabolically Stable Dibenzo[<i>b</i> , <i>e</i>]oxepin-11(6 <i>H</i>)-ones as Highly Selective p38 MAP Kinase Inhibitors: Optimizing Anti-Cytokine Activity in Human Whole Blood. Journal of Medicinal Chemistry, 2013, 56, 8561-8578.	6.4	26
47	Complex Crystal Structures of EGFR with Third-Generation Kinase Inhibitors and Simultaneously Bound Allosteric Ligands. ACS Medicinal Chemistry Letters, 2020, 11, 2484-2490.	2.8	26
48	Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chemical Science, 2019, 10, 10789-10801.	7.4	25
49	Design, Synthesis, and Biological Evaluation of Novel Type I ¹ / ₂ p38α MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine. Journal of Medicinal Chemistry, 2017, 60, 8027-8054.	6.4	24
50	Structure-Guided Development of Covalent and Mutant-Selective Pyrazolopyrimidines to Target T790M Drug Resistance in Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 2017, 60, 7725-7744.	6.4	24
51	Discovery of Inter-Domain Stabilizers—A Novel Assay System for Allosteric Akt Inhibitors. ACS Chemical Biology, 2015, 10, 279-288.	3.4	22
52	Optimized Target Residence Time: Typeâ€I Inhibitors for p38α MAP Kinase with Improved Binding Kinetics through Direct Interaction with the R‧pine. Angewandte Chemie - International Edition, 2017, 56, 5363-5367.	13.8	20
53	Persister state-directed transitioning and vulnerability in melanoma. Nature Communications, 2022, 13, .	12.8	20
54	Monitoring Ligandâ€Induced Conformational Changes for the Identification of Estrogen Receptor Agonists and Antagonists. Angewandte Chemie - International Edition, 2015, 54, 4379-4382.	13.8	19

#	Article	IF	CITATIONS
55	Targeting GSK3 from <i>Ustilago maydis</i> : Type-II Kinase Inhibitors as Potential Antifungals. ACS Chemical Biology, 2012, 7, 1257-1267.	3.4	18
56	Characterization of Covalent-Reversible EGFR Inhibitors. ACS Omega, 2017, 2, 1563-1575.	3.5	18
57	Covalent Lipid Pocket Ligands Targeting p38α MAPK Mutants. Angewandte Chemie - International Edition, 2017, 56, 13232-13236.	13.8	18
58	Targeting the MKK7–JNK (Mitogen-Activated Protein Kinase Kinase 7–c-Jun N-Terminal Kinase) Pathway with Covalent Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 2843-2848.	6.4	18
59	Targeting Gain of Function and Resistance Mutations in Abl and KIT by Hybrid Compound Design. Journal of Medicinal Chemistry, 2013, 56, 5757-5772.	6.4	17
60	Try Me: Promiscuous Inhibitors Still Allow for Selective Targeted Protein Degradation. Cell Chemical Biology, 2018, 25, 4-6.	5.2	16
61	Cellular model system to dissect the isoform-selectivity of Akt inhibitors. Nature Communications, 2021, 12, 5297.	12.8	16
62	Inhibition of Tumor VEGFR2 Induces Serine 897 EphA2-Dependent Tumor Cell Invasion and Metastasis in NSCLC. Cell Reports, 2020, 31, 107568.	6.4	15
63	An Unusual Intramolecular Halogen Bond Guides Conformational Selection. Angewandte Chemie - International Edition, 2018, 57, 9970-9975.	13.8	12
64	Mutant-Specific Targeting of Ras G12C Activity by Covalently Reacting Small Molecules. Cell Chemical Biology, 2019, 26, 1338-1348.	5.2	12
65	Characterization of Covalent Pyrazolopyrimidine–MKK7 Complexes and a Report on a Unique DFG-in/Leu-in Conformation of Mitogen-Activated Protein Kinase Kinase 7 (MKK7). Journal of Medicinal Chemistry, 2019, 62, 5541-5546.	6.4	12
66	Insight into Targeting Exon20 Insertion Mutations of the Epidermal Growth Factor Receptor with Wild Type-Sparing Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 6643-6655.	6.4	12
67	Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK. PLoS ONE, 2017, 12, e0184627.	2.5	11
68	Chemical modulation of transcription factors. MedChemComm, 2018, 9, 1249-1272.	3.4	11
69	Direct monitoring of the conformational equilibria of the activation loop in the mitogen-activated protein kinase p381±. Chemical Communications, 2018, 54, 12057-12060.	4.1	10
70	Insights into the Kinetics of the Resistance Formation of Bacteria against Ciprofloxacin Poly(2-methyl-2-oxazoline) Conjugates. Bioconjugate Chemistry, 2018, 29, 2671-2678.	3.6	10
71	Structure Defines Function: Clinically Relevant Mutations in ErbB Kinases. Journal of Medicinal Chemistry, 2020, 63, 40-51.	6.4	9
72	FLiK. Methods in Enzymology, 2014, 548, 147-171.	1.0	8

#	Article	IF	CITATIONS
73	Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angewandte Chemie, 2017, 129, 8265-8269.	2.0	8
74	Inhibitors to Overcome Secondary Mutations in the Stem Cell Factor Receptor KIT. Journal of Medicinal Chemistry, 2017, 60, 8801-8815.	6.4	7
75	Covalentâ€Allosteric Inhibitors to Achieve Akt Isoformâ€Selectivity. Angewandte Chemie, 2019, 131, 18999-19005.	2.0	7
76	Targeting Her2-insYVMA with Covalent Inhibitors—A Focused Compound Screening and Structure-Based Design Approach. Journal of Medicinal Chemistry, 2020, 63, 11725-11755.	6.4	7
77	Co-crystal structure determination and cellular evaluation of 1,4-dihydropyrazolo[4,3-c] [1,2] benzothiazine 5,5-dioxide p38α MAPK inhibitors. Biochemical and Biophysical Research Communications, 2019, 511, 579-586.	2.1	6
78	Conformational selection <i>vs.</i> induced fit: insights into the binding mechanisms of p38α MAP Kinase inhibitors. Chemical Communications, 2020, 56, 8818-8821.	4.1	6
79	RASPELD to Perform Highâ€End Screening in an Academic Environment toward the Development of Cancer Therapeutics. ChemMedChem, 2018, 13, 2065-2072.	3.2	5
80	Inhibition wirkstoffresistenter Mutationsvarianten der Rezeptortyrosinkinase EGFR. Angewandte Chemie, 2016, 128, 11069-11073.	2.0	4
81	Covalent Allosteric Inhibitors of Akt Generated Using a Click Fragment Approach. ChemMedChem, 2022, 17, .	3.2	3
82	Design and synthesis of Nrf2-derived hydrocarbon stapled peptides for the disruption of protein-DNA-interactions. PLoS ONE, 2022, 17, e0267651.	2.5	2
83	Monitoring Conformational Changes in the Receptor Tyrosine Kinase EGFR. ChemBioChem, 2016, 17, 990-994.	2.6	1
84	A cascade screening approach for the identification of Bcr-Abl myristate pocket binders active against wild type and T315I mutant. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3436-3440.	2.2	1
85	Lektion gelernt? Die molekularen Grundlagen von Kinaseâ€gerichteten Therapien und Wirkstoffresistenz im nichtâ€kleinzelligen Lungenkrebs. Angewandte Chemie, 2018, 130, 2329-2335.	2.0	1
86	Targeting EGFR Ex20 mutant lung cancer with the wild type sparing kinase inhibitor PRB001 Journal of Clinical Oncology, 2019, 37, e14718-e14718.	1.6	1
87	Kovalente Liganden zur Adressierung einer lipophilen Bindetasche in der MAPK p38 <i>α</i> . Angewandte Chemie, 2017, 129, 13415-13419.	2.0	0
88	Eine ungewöhnliche intramolekulare Halogenbindung führt zu konformationeller Selektion. Angewandte Chemie, 2018, 130, 10120-10126.	2.0	0