Å Ä;rka Å tÄ>pÃ;nkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3338675/publications.pdf Version: 2024-02-01

Δά:ρκα Δτάνρα:Νκονα:

#	Article	IF	CITATIONS
1	5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study. Pharmaceuticals, 2022, 15, 400.	3.8	3
2	The synthesis and cholinesterase inhibitory activities of solasodine analogues with seven-membered F ring. Journal of Steroid Biochemistry and Molecular Biology, 2021, 205, 105776.	2.5	10
3	Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase. Molecules, 2021, 26, 989.	3.8	15
4	Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. International Journal of Molecular Sciences, 2021, 22, 3444.	4.1	18
5	Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. Applied Sciences (Switzerland), 2021, 11, 4691.	2.5	5
6	Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE. International Journal of Molecular Sciences, 2021, 22, 9447.	4.1	11
7	Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 2021, 116, 105301.	4.1	11
8	Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors. Pharmaceuticals, 2021, 14, 1229.	3.8	6
9	N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules, 2020, 25, 2268.	3.8	8
10	N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2094-2105.	2.1	4
11	Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2106-2117.	2.1	9
12	2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules, 2019, 9, 698.	4.0	15
13	In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24, 1340.	3.8	23
14	Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study. International Journal of Molecular Sciences, 2019, 20, 1524.	4.1	18
15	Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorganic Chemistry, 2018, 78, 280-289.	4.1	8
16	Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorganic Chemistry, 2018, 80, 668-673.	4.1	12
17	Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorganic Chemistry, 2017, 71, 244-256.	4.1	7
18	Synthesis and in vitro evaluation of novel N-cycloalkylcarbamates as potential cholinesterase inhibitors. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 2143-2153.	1.8	3

ÅÃirka ÅtÄ>pÃinkovÃi

#	Article	IF	CITATIONS
19	Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules, 2017, 22, 1969.	3.8	17
20	Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules, 2016, 21, 191.	3.8	35
21	Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorganic Chemistry, 2016, 68, 23-29.	4.1	24
22	Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 173-179.	5.2	8
23	Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Advances, 2016, 6, 80114-80120.	3.6	23
24	Cholinesterase-based biosensors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 180-193.	5.2	32
25	Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1560-1572.	3.0	24
26	Electrochemical Sensors for the Estimation of the Inhibitory Effect of Phenylcarbamates to Cholinesterase. Chemosensors, 2015, 3, 274-283.	3.6	4
27	In Vitro Inhibitory Effects of 8- <i>O</i> -Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192.	3.0	24
28	Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorganic Chemistry, 2015, 58, 48-52.	4.1	19
29	Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition. Molecules, 2014, 19, 7152-7168.	3.8	11
30	Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 1735-1748.	3.0	33
31	New Method for the Determination of the Half Inhibition Concentration (IC50) of Cholinesterase Inhibitors. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2013, 68, 133-138.	1.4	2
32	Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking. Molecules, 2012, 17, 10142-10158.	3.8	44
33	1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes. Molecules, 2011, 16, 7565-7582.	3.8	21
34	Synthesis of 1â€[(1 <i>R</i>)â€1â€(6â€fluoroâ€1,3â€benzothiazolâ€2â€yl)ethyl]â€3â€substituted phenyl ureas inhibition activity to acetylcholinesterase and butyrylcholinesterase. Journal of Heterocyclic Chemistry, 2011, 48, 57-62.	and their 2.6	8
35	Inhibition of acetylcholinesterase by 14 achiral and five chiral imidazole derivates. Bioresource Technology, 2010, 101, 6281-6283.	9.6	5
36	Substituted benzyl N-phenylcarbamates – their solvolysis and inhibition activity to acetylcholinesterase and butyrylcholinesterase. Arkivoc, 2009, 2009, 1-11.	0.5	3

ÅÃirka ÅtÄ>pÃinkovÃi

#	Article	IF	CITATIONS
37	Kinetics of the total hydrolysis of acetyl-β-methylcholine by acetylcholinesterase. Reaction Kinetics and Catalysis Letters, 2008, 95, 205-211.	0.6	2
38	Cholinesterases and Cholinesterase Inhibitors. Current Enzyme Inhibition, 2008, 4, 160-171.	0.4	45
39	In vitro Inhibition of Cholinesterases by Carbamates - A Kinetic Study. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 305-307.	1.4	2
40	Inhibition of Cholinesterase by Dialkylcarbamates. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 308-310.	1.4	2
41	Kinetics of 13 New Cholinesterase Inhibitors. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 611-617.	1.4	4
42	Kinetics of Total Enzymatic Hydrolysis of Acetylcholine and Acetylthiocholine. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 289-294.	1.4	18
43	Two New Methods Monitoring Kinetics of Hydrolysis of Acetylcholine and Acetylthiocholine. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 943-946.	1.4	7
44	Half-inhibition Concentrations of New Cholinesterase Inhibitors. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 293-296.	1.4	31