Tzyh-Chang Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337865/publications.pdf

Version: 2024-02-01

414414 331670 1,251 35 21 32 g-index citations h-index papers 35 35 35 854 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gating of the CFTR Cl ^{â^'} channel by ATPâ€driven nucleotideâ€binding domain dimerisation. Journal of Physiology, 2009, 587, 2151-2161.	2.9	150
2	Deletion of phenylalanine 508 causes attenuated phosphorylationâ€dependent activation of CFTR chloride channels. Journal of Physiology, 2000, 524, 637-648.	2.9	93
3	Structural mechanisms of CFTR function and dysfunction. Journal of General Physiology, 2018, 150, 539-570.	1.9	90
4	Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Journal of General Physiology, 2010, 135, 399-414.	1.9	79
5	The Two ATP Binding Sites of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Play Distinct Roles in Gating Kinetics and Energetics. Journal of General Physiology, 2006, 128, 413-422.	1.9	71
6	CFTR Gating I. Journal of General Physiology, 2005, 125, 361-375.	1.9	58
7	Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770. Journal of General Physiology, 2019, 151, 912-928.	1.9	57
8	Potentiation of Disease-associated Cystic Fibrosis Transmembrane Conductance Regulator Mutants by Hydrolyzable ATP Analogs. Journal of Biological Chemistry, 2010, 285, 19967-19975.	3.4	54
9	Voltageâ€dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore. Journal of Physiology, 2001, 532, 435-448.	2.9	50
10	A common mechanism for CFTR potentiators. Journal of General Physiology, 2017, 149, 1105-1118.	1.9	50
11	State-dependent modulation of CFTR gating by pyrophosphate. Journal of General Physiology, 2009, 133, 405-419.	1.9	49
12	The most common cystic fibrosisâ€associated mutation destabilizes the dimeric state of the nucleotideâ€binding domains of CFTR. Journal of Physiology, 2011, 589, 2719-2731.	2.9	45
13	Modulation of CFTR gating by permeant ions. Journal of General Physiology, 2015, 145, 47-60.	1.9	44
14	On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator. Journal of Physiology, 2016, 594, 3227-3244.	2.9	35
15	Nonequilibrium Gating of CFTR on an Equilibrium Theme. Physiology, 2012, 27, 351-361.	3.1	34
16	CFTR potentiators: from bench to bedside. Current Opinion in Pharmacology, 2017, 34, 98-104.	3.5	33
17	Identification and Characterization of Novel CFTR Potentiators. Frontiers in Pharmacology, 2018, 9, 1221.	3.5	32
18	Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Molecular Pharmacology, 2016, 90, 275-285.	2.3	31

#	Article	IF	Citations
19	Identification of GLPG/ABBV-2737, a Novel Class of Corrector, Which Exerts Functional Synergy With Other CFTR Modulators. Frontiers in Pharmacology, 2019, 10, 514.	3.5	29
20	Physiological and pharmacological characterization of the N1303K mutant CFTR. Journal of Cystic Fibrosis, 2018, 17, 573-581.	0.7	26
21	A single amino acid substitution in CFTR converts ATP to an inhibitory ligand. Journal of General Physiology, 2014, 144, 311-320.	1.9	24
22	Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 107-118.	2.5	21
23	Identification of a novel post-hydrolytic state in CFTR gating. Journal of General Physiology, 2012, 139, 359-370.	1.9	19
24	Optimization of the Degenerated Interfacial ATP Binding Site Improves the Function of Disease-related Mutant Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channels. Journal of Biological Chemistry, 2010, 285, 37663-37671.	3.4	18
25	CFTR: New insights into structure and function and implications for modulation by small molecules. Journal of Cystic Fibrosis, 2020, 19, S19-S24.	0.7	16
26	Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. Journal of General Physiology, 2016, 147, 407-422.	1.9	13
27	Functional stability of CFTR depends on tight binding of ATP at its degenerate ATPâ€binding site. Journal of Physiology, 2021, 599, 4625-4642.	2.9	9
28	Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: The case of S955P and 1717-2A>G. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165905.	3.8	7
29	Cystic fibrosis research topics featured at the 14th ECFS Basic Science Conference: Chairman's summary. Journal of Cystic Fibrosis, 2018, 17, S1-S4.	0.7	5
30	Characterization of \hat{l} " (G970-T1122)-CFTR, the most frequent CFTR mutant identified in Japanese cystic fibrosis patients. Journal of Physiological Sciences, 2019, 69, 103-112.	2.1	5
31	The physiology of anion transport: tales of the bizarre and unexpected. Experimental Physiology, 2006, 91, 121-122.	2.0	1
32	CFTR: a missing link between exocrine and endocrine pancreas?. Science China Life Sciences, 2014, 57, 1044-1045.	4.9	1
33	Generation of human induced pluripotent stem cells from cystic fibrosis patient carrying nonsense mutation (p.S308X) in CFTR gene. Stem Cell Research, 2022, 60, 102683.	0.7	1
34	Pharmacological Responses of the G542X-CFTR to CFTR Modulators. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1
35	<i>In vitro</i> assessment of triple combination therapy for the most common disease-associated mutation in cystic fibrosis. European Respiratory Journal, 2022, 59, 2102380.	6.7	0

3