
Alejandro SÃ;nchez Alvarado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337335/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Current Topics in Developmental Biology, 2022, 147, 307-344.	2.2	5
2	Enhanced lipogenesis through PparÎ ³ helps cavefish adapt to food scarcity. Current Biology, 2022, 32, 2272-2280.e6.	3.9	23
3	Developmental biology is poised to discover altogether new principles in biology in the 21st century. Developmental Biology, 2022, 488, 47-47.	2.0	1
4	Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature, 2022, 606, 329-334.	27.8	19
5	Molecular characterization of a flatworm Girardia isolate from Guanajuato, Mexico. Developmental Biology, 2022, 489, 165-177.	2.0	1
6	Unceasingly searching for answers - an interview with Claudio Stern. International Journal of Developmental Biology, 2021, 65, 131-136.	0.6	0
7	Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis. ELife, 2021, 10, .	6.0	7
8	Decellularization Enables CharacterizationÂand Functional Analysis of Extracellular Matrix in Planarian Regeneration. Molecular and Cellular Proteomics, 2021, 20, 100137.	3.8	11
9	Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms. Development (Cambridge), 2021, 148, .	2.5	11
10	Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea. Nature Cell Biology, 2021, 23, 939-952.	10.3	38
11	Planarian Ovary Dissection for Ultrastructural Analysis and Antibody Staining. Journal of Visualized Experiments, 2021, , .	0.3	0
12	The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harbor Perspectives in Biology, 2021, , a040931.	5.5	1
13	Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nature Communications, 2021, 12, 6706.	12.8	10
14	CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Developmental Cell, 2020, 54, 805-817.e7.	7.0	134
15	Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science, 2020, 369, .	12.6	147
16	Vertebrate diapause preserves organisms long term through Polycomb complex members. Science, 2020, 367, 870-874.	12.6	79
17	Wnt and TGFÎ ² coordinate growth and patterning to regulate size-dependent behaviour. Nature, 2019, 572, 655-659.	27.8	42
18	Planarians recruit piRNAs for mRNA turnover in adult stem cells. Genes and Development, 2019, 33, 1575-1590.	5.9	39

2

#	Article	IF	CITATIONS
19	Regulation of Genomic Output and (Pluri)potency in Regeneration. Annual Review of Genetics, 2019, 53, 327-346.	7.6	15
20	Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes. Molecular Biology and Evolution, 2019, 36, 1507-1520.	8.9	65
21	Efficient depletion of ribosomal RNA for RNA sequencing in planarians. BMC Genomics, 2019, 20, 909.	2.8	25
22	To solve old problems, study new research organisms. Developmental Biology, 2018, 433, 111-114.	2.0	20
23	An adaptable chromosome preparation methodology for use in invertebrate research organisms. BMC Biology, 2018, 16, 25.	3.8	26
24	Dr. Panagiotis (Takis) Tsonis: A man for all seasons. Developmental Biology, 2018, 433, 115-117.	2.0	1
25	Cellular, ultrastructural and molecular analyses of epidermal cell development in the planarian Schmidtea mediterranea. Developmental Biology, 2018, 433, 357-373.	2.0	35
26	Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell, 2018, 173, 1593-1608.e20.	28.9	213
27	Whole-Mount BrdU Staining with Fluorescence In Situ Hybridization in Planarians. Methods in Molecular Biology, 2018, 1774, 423-434.	0.9	7
28	Systemic RNA Interference in Planarians by Feeding of dsRNA Containing Bacteria. Methods in Molecular Biology, 2018, 1774, 445-454.	0.9	10
29	Planarians and theÂHistory of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology. Methods in Molecular Biology, 2018, 1774, 207-239.	0.9	13
30	Culturing Planarians in theÂLaboratory. Methods in Molecular Biology, 2018, 1774, 241-258.	0.9	38
31	Planarian High Molecular Weight DNA Isolation byÂSpooling. Methods in Molecular Biology, 2018, 1774, 277-284.	0.9	6
32	Complete Regeneration of a Cameraâ€ŧype Eye in the Research Organism Pomacea canaliculata. FASEB Journal, 2018, 32, 232.4.	0.5	2
33	Widespread maintenance of genome heterozygosity in Schmidtea mediterranea. Nature Ecology and Evolution, 2017, 1, 19.	7.8	27
34	PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration. Developmental Biology, 2017, 427, 165-175.	2.0	15
35	Hands-On Classroom Activities for Exploring Regeneration and Stem Cell Biology with Planarians. American Biology Teacher, 2017, 79, 208-223.	0.2	20
36	The <i>miR-124</i> family of microRNAs is critical for regeneration of the brain and visual system in the planarian <i>Schmidtea mediterranea</i> . Development (Cambridge), 2017, 144, 3211-3223.	2.5	31

#	Article	IF	CITATIONS
37	Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. ELife, 2017, 6, .	6.0	67
38	Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. ELife, 2016, 5, .	6.0	81
39	Comparative and Transcriptome Analyses Uncover Key Aspects of Coding- and Long Noncoding RNAs in Flatworm Mitochondrial Genomes. G3: Genes, Genomes, Genetics, 2016, 6, 1191-1200.	1.8	30
40	Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians. Developmental Cell, 2016, 38, 413-429.	7.0	67
41	Head regeneration in hemichordates is not a strict recapitulation of development. Developmental Dynamics, 2016, 245, 1159-1175.	1.8	28
42	Widening perspectives on regenerative processes through growth. Npj Regenerative Medicine, 2016, 1, .	5.2	1
43	SmedGD 2.0: The <i>Schmidtea mediterranea</i> genome database. Genesis, 2015, 53, 535-546.	1.6	114
44	Set1 and MLL1/2 Target Distinct Sets of Functionally Different Genomic Loci InÂVivo. Cell Reports, 2015, 13, 2741-2755.	6.4	56
45	Types or States? Cellular Dynamics and Regenerative Potential. Trends in Cell Biology, 2015, 25, 687-696.	7.9	39
46	Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ. ELife, 2015, 4, .	6.0	65
47	Unravelling a can of worms. ELife, 2015, 4, .	6.0	2
48	Egr-5 is a post-mitotic regulator of planarian epidermal differentiation. ELife, 2015, 4, e10501.	6.0	97
49	Histone Modifications and Regeneration in the Planarian Schmidtea mediterranea. Current Topics in Developmental Biology, 2014, 108, 71-93.	2.2	25
50	Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in <i>Schmidtea mediterranea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5159-68.	7.1	27
51	Rethinking Differentiation: Stem Cells, Regeneration, and Plasticity. Cell, 2014, 157, 110-119.	28.9	217
52	Molecular cloning and characterization of SL3: A stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene, 2014, 533, 156-167.	2.2	17
53	Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. ELife, 2014, 3, e02238.	6.0	121
54	The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 301-326.	5.9	170

#	Article	IF	CITATIONS
55	Learning about loss. ELife, 2013, 2, e00533.	6.0	2
56	On the trail of a tropical disease. ELife, 2013, 2, e01115.	6.0	2
57	Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4904-4909.	7.1	104
58	Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development (Cambridge), 2012, 139, 3510-3520.	2.5	82
59	Q&A: What is regeneration, and why look to planarians for answers?. BMC Biology, 2012, 10, 88.	3.8	26
60	Centrosome Loss in the Evolution of Planarians. Science, 2012, 335, 461-463.	12.6	154
61	Cellular Hyperproliferation and Cancer as Evolutionary Variables. Current Biology, 2012, 22, R772-R778.	3.9	23
62	Planarian Immobilization, Partial Irradiation, and Tissue Transplantation. Journal of Visualized Experiments, 2012, , .	0.3	14
63	TORC1 is required to balance cell proliferation and cell death in planarians. Developmental Biology, 2012, 365, 458-469.	2.0	45
64	The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development (Cambridge), 2011, 138, 3769-3780.	2.5	101
65	De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Research, 2011, 21, 1193-1200.	5.5	100
66	Cell death and tissue remodeling in planarian regeneration. Developmental Biology, 2010, 338, 76-85.	2.0	300
67	Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Developmental Biology, 2010, 347, 24-39.	2.0	186
68	A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development (Cambridge), 2010, 137, 213-221.	2.5	157
69	High-resolution profiling and discovery of planarian small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11546-11551.	7.1	128
70	Formaldehydeâ€based wholeâ€mount in situ hybridization method for planarians. Developmental Dynamics, 2009, 238, 443-450.	1.8	298
71	Flow cytometry methods for the study of cell ycle parameters of planarian stem cells. Developmental Dynamics, 2009, 238, 1111-1117.	1.8	45
72	Formaldehyde-based whole-mount in situ hybridization method for planarians. Developmental Dynamics, 2009, 238, spcone-spcone.	1.8	0

Alejandro SÃinchez Alvarado

#	Article	IF	CITATIONS
73	A cellular view of regeneration. Nature, 2009, 460, 39-40.	27.8	12
74	Planarian Hh Signaling Regulates Regeneration Polarity and Links Hh Pathway Evolution to Cilia. Science, 2009, 326, 1406-1410.	12.6	213
75	MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research, 2008, 18, 188-196.	5.5	1,564
76	Gene nomenclature guidelines for the planarian <i>Schmidtea mediterranea</i> . Developmental Dynamics, 2008, 237, 3099-3101.	1.8	23
77	Gene nomenclature guidelines for the planarianSchmidtea mediterranea. Developmental Dynamics, 2008, 237, spcone-spcone.	1.8	0
78	Stem cells in animal models of regeneration. Stembook, 2008, , .	0.3	11
79	Molecular Analysis of Stem Cells and Their Descendants during Cell Turnover and Regeneration in the Planarian Schmidtea mediterranea. Cell Stem Cell, 2008, 3, 327-339.	11.1	347
80	Slicing across Kingdoms: Regeneration in Plants and Animals. Cell, 2008, 132, 697-710.	28.9	345
81	The Shredding of a Caricature. Cell, 2008, 135, 991-992.	28.9	2
82	β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis. Science, 2008, 319, 323-327.	12.6	417
83	Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. DMM Disease Models and Mechanisms, 2008, 1, 131-143.	2.4	79
84	Systematic analysis of cell signaling during planarian tissue regeneration, remodeling & homeostasis. FASEB Journal, 2008, 22, 390.1.	0.5	0
85	BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development (Cambridge), 2007, 134, 4043-4051.	2.5	156
86	Stem cells and the Planarian Schmidtea mediterranea. Comptes Rendus - Biologies, 2007, 330, 498-503.	0.2	45
87	SmedCD: the Schmidtea mediterranea genome database. Nucleic Acids Research, 2007, 36, D599-D606.	14.5	251
88	Cell Turnover and Adult Tissue Homeostasis: From Humans to Planarians. Annual Review of Genetics, 2007, 41, 83-105.	7.6	266
89	Bridging the regeneration gap: insights from echinoderm models. Nature Reviews Genetics, 2007, 8, 320-320.	16.3	1
90	Planarian Regeneration: Its End Is Its Beginning. Cell, 2006, 124, 241-245.	28.9	155

#	Article	IF	CITATIONS
91	Design, Implementation and Deployment of a Commodity Cluster for Periodic Comparisons of Gene Sequences. , 2006, , 733-744.		0
92	Bridging the regeneration gap: genetic insights from diverse animal models. Nature Reviews Genetics, 2006, 7, 873-884.	16.3	416
93	Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Experimental Cell Research, 2005, 306, 299-308.	2.6	64
94	Identification of Genes Needed for Regeneration, Stem Cell Function, and Tissue Homeostasis by Systematic Gene Perturbation in Planaria. Developmental Cell, 2005, 8, 635-649.	7.0	386
95	SMEDWI-2 Is a PIWI-Like Protein That Regulates Planarian Stem Cells. Science, 2005, 310, 1327-1330.	12.6	543
96	Regeneration and the need for simpler model organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 759-763.	4.0	51
97	Planarians. Current Biology, 2004, 14, R737-R738.	3.9	12
98	FUNDAMENTALS OF PLANARIAN REGENERATION. Annual Review of Cell and Developmental Biology, 2004, 20, 725-757.	9.4	921
99	Morphological and Functional Recovery of the Planarian Photosensing System during Head Regeneration. Zoological Science, 2004, 21, 275-283.	0.7	126
100	Allometric scaling and proportion regulation in the freshwater planarianSchmidtea mediterranea. Developmental Dynamics, 2003, 226, 326-333.	1.8	147
101	The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Current Opinion in Genetics and Development, 2003, 13, 438-444.	3.3	70
102	Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11861-11865.	7.1	260
103	Identification of immunological reagents for use in the study of freshwater planarians by means of whole-mount immunofluorescence and confocal microscopy. Genesis, 2002, 32, 293-298.	1.6	37
104	FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature, 2002, 419, 620-624.	27.8	244
105	Not your father's planarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, 2002, 3, 210-219.	16.3	454
106	The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development (Cambridge), 2002, 129, 5659-5665.	2.5	222
107	Regeneration in the metazoans: why does it happen?. BioEssays, 2000, 22, 578-590.	2.5	269
108	Bromodeoxyuridine Specifically Labels the Regenerative Stem Cells of Planarians. Developmental Biology, 2000, 220, 142-153.	2.0	450

#	Article	IF	CITATIONS
109	The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair and Regeneration, 1998, 6, S-413-S-420.	3.0	27