Ying-Lien Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337228/publications.pdf

Version: 2024-02-01

38 papers 1,804 citations

304743 22 h-index 315739 38 g-index

40 all docs

40 docs citations

40 times ranked

2348 citing authors

#	Article	IF	CITATIONS
1	Cryptococcus neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host and Microbe, 2013, 13, 265-276.	11.0	167
2	Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata. PLoS Pathogens, 2012, 8, e1002718.	4.7	158
3	Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in <i>Candida albicans</i> . Molecular Microbiology, 2010, 75, 1112-1132.	2.5	127
4	New facets of antifungal therapy. Virulence, 2017, 8, 222-236.	4.4	123
5	Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens, 2020, 9, 459.	2.8	114
6	Unique Evolution of the UPR Pathway with a Novel bZIP Transcription Factor, Hxl1, for Controlling Pathogenicity of Cryptococcus neoformans. PLoS Pathogens, 2011, 7, e1002177.	4.7	106
7	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
8	Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2012, 2, 675-691.	1.8	90
9	Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 2019, 10, 4275.	12.8	80
10	Posaconazole Exhibits In Vitro and In Vivo Synergistic Antifungal Activity with Caspofungin or FK506 against Candida albicans. PLoS ONE, 2013, 8, e57672.	2.5	54
11	Calcineurin Controls Hyphal Growth, Virulence, and Drug Tolerance of Candida tropicalis. Eukaryotic Cell, 2014, 13, 844-854.	3.4	52
12	Calcineurin Is Required for Pseudohyphal Growth, Virulence, and Drug Resistance in Candida lusitaniae. PLoS ONE, 2012, 7, e44192.	2.5	49
13	Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii. G3: Genes, Genomes, Genetics, 2013, 3, 527-539.	1.8	48
14	Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE, 2018, 13, e0196520.	2.5	48
15	Calcineurin signaling: lessons from Candida species. FEMS Yeast Research, 2015, 15, fov016.	2.3	47
16	Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida albicans. Frontiers in Microbiology, 2019, 10, 86.	3. 5	43
17	<i>Candida albicans</i> Uses Multiple Mechanisms To Acquire the Essential Metabolite Inositol during Infection. Infection and Immunity, 2008, 76, 2793-2801.	2.2	41
18	Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nature Communications, 2020, 11, 1521.	12.8	41

#	Article	IF	CITATIONS
19	On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Current Fungal Infection Reports, 2010, 4, 244-255.	2.6	35
20	Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis. Journal of Fungi (Basel, Switzerland), 2018, 4, 68.	3.5	34
21	Deletion of <i>ADA2</i> Increases Antifungal Drug Susceptibility and Virulence in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	32
22	Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific Reports, 2015, 5, 8767.	3.3	31
23	Protein kinase A governs growth and virulence in Candida tropicalis. Virulence, 2018, 9, 331-347.	4.4	24
24	Surface and Antimicrobial Activity of Sulfobetaines. Journal of Surfactants and Detergents, 2016, 19, 813-822.	2.1	23
25	Synthesis and antifungal activities of miltefosine analogs. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4828-4831.	2.2	20
26	The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species. International Journal of Antimicrobial Agents, 2017, 49, 740-748.	2.5	20
27	Comparative analysis of calcineurin signaling betweenCandida dubliniensisandCandida albicans. Communicative and Integrative Biology, 2012, 5, 122-126.	1.4	16
28	The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Medical Mycology, 2020, 58, 248-259.	0.7	13
29	Calcineurin Regulates Conidiation, Chlamydospore Formation and Virulence in Fusarium oxysporum f. sp. lycopersici. Frontiers in Microbiology, 2020, 11, 539702.	3.5	12
30	Repurposing the thrombopoietin receptor agonist eltrombopag as an anticryptococcal agent. Medical Mycology, 2020, 58, 493-504.	0.7	11
31	Gemini quaternary ammonium compound PMT12-BF4 inhibits Candida albicans via regulating iron homeostasis. Scientific Reports, 2020, 10, 2911.	3.3	10
32	Differential integration rates of hepatitis B virus DNA in the liver of children with chronic hepatitis B virus infection and hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2005, 20, 1206-1214.	2.8	8
33	Candida albicans OPI1 Regulates Filamentous Growth and Virulence in Vaginal Infections, but Not Inositol Biosynthesis. PLoS ONE, 2015, 10, e0116974.	2.5	8
34	Efficient identification of fungal antimicrobial principles by tandem MS and NMR database. Journal of Food and Drug Analysis, 2019, 27, 860-868.	1.9	7
35	Natural alkaloid tryptanthrin exhibits novel anticryptococcal activity. Medical Mycology, 2021, 59, 545-556.	0.7	6
36	Antifungal Activity of Morpholine and Piperidine Based Surfactants. Tenside, Surfactants, Detergents, 2020, 57, 104-108.	1.2	4

YING-LIEN CHEN

#	Article	IF	CITATIONS
37	Fusarium solani species complex infection in elasmobranchs: A case report for rough-tail stingray with valid antifungal therapy. Medical Mycology Case Reports, 2021, 32, 34-38.	1.3	3
38	Detection of Pathogenic and Beneficial Microbes for Roselle Wilt Disease. Frontiers in Microbiology, 2021, 12, 756100.	3.5	2