Nicolas Ubrig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337216/publications.pdf

Version: 2024-02-01

331670 361022 2,322 35 21 35 h-index citations g-index papers 35 35 35 4691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Very large tunneling magnetoresistance in layered magnetic semiconductor Crl3. Nature Communications, 2018, 9, 2516.	12.8	472
2	Mono- and Bilayer WS ₂ Light-Emitting Transistors. Nano Letters, 2014, 14, 2019-2025.	9.1	424
3	Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364, 973-976.	12.6	347
4	Tuning magnetotransport in a compensated semimetal at the atomic scale. Nature Communications, 2015, 6, 8892.	12.8	133
5	Design of van der Waals interfaces for broad-spectrum optoelectronics. Nature Materials, 2020, 19, 299-304.	27.5	106
6	Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS ₂ . Nano Letters, 2015, 15, 8289-8294.	9.1	67
7	Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides. Crystal Growth and Design, 2013, 13, 4453-4459.	3.0	66
8	Electroluminescence from indirect band gap semiconductor ReS ₂ . 2D Materials, 2016, 3, 045016.	4.4	66
9	Low-temperature monoclinic layer stacking in atomically thin CrI ₃ crystals. 2D Materials, 2020, 7, 015007.	4.4	65
10	Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides Revealed by Wavelength-Dependent Mapping. Nano Letters, 2017, 17, 5719-5725.	9.1	54
11	Microfocus Laser–Angle-Resolved Photoemission on Encapsulated Mono-, Bi-, and Few-Layer 1T′-WTe ₂ . Nano Letters, 2019, 19, 554-560.	9.1	52
12	Fabry-Perot enhanced Faraday rotation in graphene. Optics Express, 2013, 21, 24736.	3.4	47
13	Enhanced Electron-Phonon Interaction in Multivalley Materials. Physical Review X, 2019, 9, .	8.9	47
14	Hole Transport in Exfoliated Monolayer MoS ₂ . ACS Nano, 2018, 12, 2669-2676.	14.6	41
15	Quasiâ€1D Electronic Transport in a 2D Magnetic Semiconductor. Advanced Materials, 2022, 34, e2109759.	21.0	40
16	Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml: .<="" 2,="" 2020,="" physical="" research,="" review="" td=""><td>mro‱ < m</td><td>ml:860>1</td></mml:></mml:msub></mml:mrow></mml:math>	mr o‱ < m	ml:860>1
17	Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors. Applied Physics Letters, 2014, 104, .	3.3	35
18	Determination of effective mass in InN by high-field oscillatory magnetoabsorption spectroscopy. Physical Review B, 2011, 83, .	3.2	34

#	Article	IF	Citations
19	Semiconducting van der Waals Interfaces as Artificial Semiconductors. Nano Letters, 2018, 18, 5146-5152.	9.1	25
20	Magneto-optical spectroscopy of highly aligned carbon nanotubes: Identifying the role of threading magnetic flux. Physical Review B, 2008, 78, .	3.2	24
21	Flipping exciton angular momentum with chiral phonons in MoSe ₂ /WSe ₂ heterobilayers. 2D Materials, 2020, 7, 041002.	4.4	24
22	Ionic gate spectroscopy of 2D semiconductors. Nature Reviews Physics, 2021, 3, 508-519.	26.6	22
23	Lithium-ion conducting glass ceramics for electrostatic gating. Applied Physics Letters, 2018, 113, .	3.3	17
24	Fluid Inclusion Studies in Opaque Ore Minerals: II. A Comparative Study of Syngenetic Synthetic Fluid Inclusions Hosted in Quartz and Opaque Minerals. Economic Geology, 2018, 113, 1861-1883.	3.8	15
25	High-field magnetotransmission investigation of natural graphite. Physical Review B, 2011, 83, .	3.2	11
26	Fluid Inclusion Studies in Opaque Ore Minerals: I. Trace Element Content and Physical Properties of Ore Minerals Controlling Textural Features in Transmitted Near-Infrared Light Microscopy. Economic Geology, 2018, 113, 1845-1860.	3.8	11
27	Synthetic Semimetals with van der Waals Interfaces. Nano Letters, 2020, 20, 1322-1328.	9.1	9
28	Photoluminescence Measurement of Er,O-Codoped GaAs Under a Pulsed Magnetic Field up to 60ÂT. Journal of Low Temperature Physics, 2010, 159, 203-207.	1.4	7
29	Infrared spectroscopy of hole-doped ABA-stacked trilayer graphene. Europhysics Letters, 2012, 100, 58003.	2.0	7
30	Magnetization dependent tunneling conductance of ferromagnetic barriers. Nature Communications, 2021, 12, 6659.	12.8	6
31	Energy structure of Er-2O center in GaAs:Er,O studied by high magnetic field photoluminescence measurement. Journal of Luminescence, 2011, 131, 2294-2298.	3.1	4
32	Dynamic Alignment of Single-Walled Carbon Nanotubes inÂPulsed Magnetic Fields. Journal of Low Temperature Physics, 2010, 159, 262-266.	1.4	3
33	Identifying atomically thin crystals with diffusively reflected light. 2D Materials, 2021, 8, 045016.	4.4	2
34	Light sources with bias tunable spectrum based on van der Waals interface transistors. Nature Communications, 2022, 13, .	12.8	2
35	HIGH FIELD MAGNETO-OPTICAL SPECTROSCOPY OF HIGHLY ALIGNED INDIVIDUAL AND ENSEMBLE SINGLE-WALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2009, 23, 2667-2675.	2.0	1