Lijun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333710/publications.pdf

Version: 2024-02-01

220 papers 17,657 citations

18482 62 h-index 128 g-index

223 all docs

223 docs citations

223 times ranked 17308 citing authors

#	Article	IF	CITATIONS
1	Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity. Discrete and Continuous Dynamical Systems - Series S, 2023, 16, 639-654.	1.1	2
2	Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 740-760.	2.8	23
3	Persistence of solitary wave solutions to a singularly perturbed generalized mKdV equation. Applied Mathematics Letters, 2022, 124, 107668.	2.7	7
4	STUDIES ON INDIVIDUAL FLUXES VIA POISSON-NERNST-PLANCK MODELS WITH SMALL PERMANENT CHARGES AND PARTIAL ELECTRONEUTRALITY CONDITIONS. Journal of Applied Analysis and Computation, 2022, 12, 87-105.	0.5	1
5	Studies on reversal permanent charges and reversal potentials via classical Poisson-Nernst-Planck systems with boundary layers. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.9	О
6	Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. European Physical Journal: Special Topics, 2022, 231, 521-533.	2.6	104
7	Nb/Sn Liquid-Solid Reactive Diffusion Couples and Their Application to Determination of Phase Equilibria and Interdiffusion Coefficients of Nb-Sn Binary System. Materials, 2022, 15, 113.	2.9	1
8	An Effective Strategy to Maintain the CALPHAD Atomic Mobility Database of Multicomponent Systems and Its Application to Hcp Mg–Al–Zn–Sn Alloys. Materials, 2022, 15, 283.	2.9	2
9	Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273â^¼1473 K. International Journal of Materials Research, 2022, .	0.3	0
10	Automated Development of an Accurate Diffusion Database in Fcc AlCoCrFeNi High-Entropy Alloys from a Big Dataset of Composition Profiles. Materials, 2022, 15, 3240.	2.9	4
11	A Symplectic Algorithm for Constrained Hamiltonian Systems. Axioms, 2022, 11, 217.	1.9	3
12	Mixed Convection Flow over an Elastic, Porous Surface with Viscous Dissipation: A Robust Spectral Computational Approach. Fractal and Fractional, 2022, 6, 263.	3.3	11
13	HIGHER ORDER EXPANSIONS IN FINITE ION SIZE VIA POISSON-NERNST-PLANCK SYSTEMS WITH BIKERMAN'S LOCAL HARD-SPHERE POTENTIAL. Journal of Applied Analysis and Computation, 2022, 12, 907-931.	0.5	0
14	Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics. Mathematics, 2022, 10, 2391.	2.2	11
15	Highâ€throughput computational materials screening and discovery of optoelectronic semiconductors. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, .	14.6	52
16	Thermally developed coupled stress particleâ€"fluid motion with mass transfer and peristalsis. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2515-2524.	3.6	28
17	Dynamics of Classical Poisson–Nernst–Planck Systems with Multiple Cations and Boundary Layers. Journal of Dynamics and Differential Equations, 2021, 33, 211-234.	1.9	22
18	Band structure engineering through van der Waals heterostructing superlattices of <scp>twoâ€dimensional</scp> transition metal dichalcogenides. InformaÄnÃ-Materiály, 2021, 3, 201-211.	17.3	27

#	Article	IF	CITATIONS
19	High Colorâ€Rendering Index and Stable White Lightâ€Emitting Diodes by Assembling Two Broadband Emissive Selfâ€Trapped Excitons. Advanced Materials, 2021, 33, e2001367.	21.0	162
20	Motion equations and non-Noether symmetries of Lagrangian systems with conformable fractional derivative. Thermal Science, 2021, 25, 1365-1372.	1.1	3
21	Exact solutions of fractional nonlinear equations by generalized bell polynomials and bilinear method. Thermal Science, 2021, 25, 1373-1380.	1.1	1
22	Optical emission enhancement of bent InSe thin films. Science China Information Sciences, 2021, 64, 1.	4.3	6
23	Discovery of New Phases of Bismuth Oxyselenide Semiconductor Bi 2 OSe 2 by Global Structure Search Approach. Advanced Theory and Simulations, 2021, 4, 2000316.	2.8	2
24	Electronic and optical properties of tapered tetrahedral semiconductor nanocrystals. Nanotechnology, 2021, 32, 295203.	2.6	2
25	Phase transition pathway of hybrid halide perovskites under compression: Insights from first-principles calculations. Physical Review Materials, 2021, 5, .	2.4	6
26	An Effective Approach to Acquire the Impurity Diffusion Coefficients in Binary Alloys with Quantified Uncertainties. Metals, 2021, 11, 809.	2.3	2
27	Minimum cost solution to residential energy-water nexus through rainwater harvesting and greywater recycling. Journal of Cleaner Production, 2021, 298, 126742.	9.3	11
28	Mathematical analysis of Poisson–Nernst–Planck models with permanent charges and boundary layers: studies on individual fluxes. Nonlinearity, 2021, 34, 3879-3906.	1.4	9
29	Stable zero-dimensional cesium indium bromide hollow nanocrystals emitting blue light from self-trapped excitons. Nano Today, 2021, 38, 101153.	11.9	33
30	Diffusion behavior of fcc and L12 Ni–Al–Cr alloys. Vacuum, 2021, 189, 110238.	3.5	5
31	Experimental investigation of diffusion behaviors in γ and γ' Ni–Al–Co alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102286.	1.6	1
32	High-throughput determination of the composition-dependent mechanical and diffusion properties in β Ti–Nb–Zr–Hf refractory alloys. Journal of Alloys and Compounds, 2021, 876, 160150.	5.5	17
33	Thermodynamic descriptions of the binary Ni–Sn and ternary Cu–Ni–Sn systems over entire composition range: A revisit. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 75, 102344.	1.6	8
34	Temperature-induced phase transition of two-dimensional semiconductor GaTe*. Chinese Physics B, 2021, 30, 016402.	1.4	2
35	New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation. Nonlinear Dynamics, 2021, 106, 3479-3493.	5. 2	13
36	Research on the Thermal Characteristics of an 18650 Lithium-Ion Battery Based on an Electrochemical–Thermal Flow Coupling Model. World Electric Vehicle Journal, 2021, 12, 250.	3.0	11

#	Article	IF	CITATIONS
37	Experimental Investigation and Thermodynamic Verification for the Phase Relation around the Îμ-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System. Materials, 2021, 14, 6892.	2.9	0
38	Van der Waals SnSe 2(1â^' x) S 2 x Alloys: Compositionâ€Dependent Bowing Coefficient and Electron–Phonon Interaction. Advanced Functional Materials, 2020, 30, 1908092.	14.9	18
39	Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14, 154-163.	31.4	443
40	Diverse electronic properties of 2D layered Se-containing materials composed of quasi-1D atomic chains. Physical Chemistry Chemical Physics, 2020, 22, 2122-2129.	2.8	10
41	A Real-Time Energy Management and Speed Controller for an Electric Vehicle Powered by a Hybrid Energy Storage System. IEEE Transactions on Industrial Informatics, 2020, 16, 6272-6280.	11.3	34
42	Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy, 2020, 68, 104362.	16.0	102
43	Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs ₃ Sb ₂ Br ₉ Quantum Dots. ACS Energy Letters, 2020, 5, 385-394.	17.4	169
44	A New Type of Solitary Wave Solution of the mKdV Equation Under Singular Perturbations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050162.	1.7	15
45	Color Tunable Selfâ€Trapped Emissions from Leadâ€Free All Inorganic IAâ€IB Bimetallic Halides Csâ€Agâ€X (X =	Cl, <u>)</u> Ţ <u>j</u> ĘTQ	q1 ₄₄ 0.784 <mark>3</mark>
46	Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule, 2020, 4, 2646-2660.	24.0	218
47	Parameter Identification and State Estimation of Lithium-Ion Batteries for Electric Vehicles with Vibration and Temperature Dynamics. World Electric Vehicle Journal, 2020, 11, 50.	3.0	17
48	A special case study of boundary layer effects via Poisson-Nernst-Planck systems with permanent charges. , 2020, , .		0
49	Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles. Entropy, 2020, 22, 1070.	2.2	108
50	Rashba band splitting in two-dimensional Ruddlesden–Popper halide perovskites. Journal of Applied Physics, 2020, 128, 175101.	2.5	11
51	Discovery of New Polymorphs of Gallium Oxides with Particle Swarm Optimizationâ€Based Structure Searches. Advanced Electronic Materials, 2020, 6, 2000119.	5.1	17
52	Observation of excitonic series in monolayer and few-layer black phosphorus. Physical Review B, 2020, 101, .	3.2	25
53	High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review. Journal of Materials Science, 2020, 55, 10303-10338.	3.7	34
54	Enhanced Optical Emission from 2D InSe Bent onto Siâ€Pillars. Advanced Optical Materials, 2020, 8, 2000828.	7.3	17

#	Article	IF	CITATIONS
55	Cdâ€Rich Alloyed CsPb _{1â€} <i>_x</i> Cd <i>_x</i> Br ₃ Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. Advanced Science, 2020, 7, 2000930.	11.2	52
56	Stable and luminescent halide perovskite fabricated in water. Light: Science and Applications, 2020, 9, 106.	16.6	18
57	New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties. Advanced Functional Materials, 2020, 30, 2001920.	14.9	33
58	Colloidal Synthesis of Ternary Copper Halide Nanocrystals for High-Efficiency Deep-Blue Light-Emitting Diodes with a Half-Lifetime above 100 h. Nano Letters, 2020, 20, 3568-3576.	9.1	200
59	Stable Yellow Light-Emitting Devices Based on Ternary Copper Halides with Broadband Emissive Self-Trapped Excitons. ACS Nano, 2020, 14, 4475-4486.	14.6	199
60	Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface. Mathematics, 2020, 8, 380.	2.2	82
61	Symmetry Reductions, Dynamical Behavior and Exact Explicit Solutions to a Class of Nonlinear Shallow Water Wave Equation. Qualitative Theory of Dynamical Systems, 2020, 19, 1.	1.7	8
62	From Distortion to Disconnection: Linear Alkyl Diammonium Cations Tune Structure and Photoluminescence of Lead Bromide Perovskites. Advanced Optical Materials, 2020, 8, 1902051.	7.3	30
63	Double Wronskian solutions to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation. Applied Mathematics Letters, 2020, 105, 106285.	2.7	8
64	Computational functionalityâ€driven design of semiconductors for optoelectronic applications. InformaÄnÃ-Materiály, 2020, 2, 879-904.	17.3	32
65	Effects of Bi addition on solidification behavior of Mg–Al–Zn casting alloys using experiments and CALPHAD calculations. Journal of Materials Science, 2020, 55, 7039-7051.	3.7	7
66	Imaging of the Atomic Structure of All-Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 818-823.	4.6	26
67	Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Applied Mathematics and Mechanics (English Edition), 2020, 41, 637-654.	3.6	91
68	Anisotropic Atomic Mobilities of Layer-Structured O3 Li _{<i>x</i>} CoO ₂ Cathodes and Their Applications in Optimization of Battery Performance. Journal of Physical Chemistry C, 2020, 124, 10832-10844.	3.1	6
69	Stacking Effects on Electron–Phonon Coupling in Layered Hybrid Perovskites <i>via</i> Microstrain Manipulation. ACS Nano, 2020, 14, 5806-5817.	14.6	50
70	Halogen Substitution in Zeroâ€Dimensional Mixed Metal Halides toward Photoluminescence Modulation and Enhanced Quantum Yield. Advanced Optical Materials, 2020, 8, 2000418.	7.3	29
71	Extraordinary Temperature Dependent Second Harmonic Generation in Atomically Thin Layers of Transitionâ€Metal Dichalcogenides. Advanced Optical Materials, 2020, 8, 2000441.	7.3	30
72	Halide Homogenization for High-Performance Blue Perovskite Electroluminescence. Research, 2020, 2020, 9017871.	5.7	32

#	Article	IF	Citations
73	STABILITY AND HOPF BIFURCATION ANALYSIS ON A SPRUCE-BUDWORM MODEL WITH DELAY. Journal of Applied Analysis and Computation, 2020, 10, 2711-2721.	0.5	O
74	Thermodynamically stabilized β-CsPbI ₃ –based perovskite solar cells with efficiencies >18%. Science, 2019, 365, 591-595.	12.6	963
75	CsPb(I Br1â^')3 solar cells. Science Bulletin, 2019, 64, 1532-1539.	9.0	114
76	Composition-dependent hardness and Young's modulus in fcc Ni–X (X = Rh, Ta, W, Re, Os, and Ir) alloys: Experimental measurements and CALPHAD modeling. Journal of Materials Research, 2019, 34, 3104-3115.	2.6	2
77	Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. IEEE Access, 2019, 7, 129335-129352.	4.2	165
78	Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nature Communications, 2019, 10, 4686.	12.8	105
79	Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells. Science Bulletin, 2019, 64, 1608-1616.	9.0	58
80	Bottom-up growth of homogeneous Moir \tilde{A} \otimes superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	12.8	59
81	A Novel Lie Group Classification Method for Generalized Cylindrical KdV Type of Equation: Exact Solutions and Conservation Laws. Journal of Mathematical Fluid Mechanics, 2019, 21, 1.	1.0	7
82	Thermochromic Leadâ€Free Halide Double Perovskites. Advanced Functional Materials, 2019, 29, 1807375.	14.9	120
83	The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations. Nonlinear Analysis: Real World Applications, 2019, 47, 236-250.	1.7	38
84	On Gibbs Energy for the Metastable bcc_A2 Phase with a Thermal Vacancy in Metals and Alloys. Materials, 2019, 12, 292.	2.9	3
85	Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 349-355.	20.2	136
86	Stability and Bifurcation Analysis on a Predator–Prey System with the Weak Allee Effect. Mathematics, 2019, 7, 432.	2.2	8
87	Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. ACS Nano, 2019, 13, 7996-8003.	14.6	64
88	A Hierarchical Optimisation of a Compressed Natural Gas Station for Energy and Fuelling Efficiency under a Demand Response Program. Energies, 2019, 12, 2165.	3.1	7
89	Computational Design of Mixed-Valence Tin Sulfides as Solar Absorbers. ACS Applied Materials & Solar Absorbers. ACS App	8.0	11
90	Design of Mixedâ€Cation Triâ€Layered Pbâ€Free Halide Perovskites for Optoelectronic Applications. Advanced Electronic Materials, 2019, 5, 1900234.	5.1	21

#	Article	IF	Citations
91	OpenIEC: an open-source code for interfacial energy calculation in alloys. Journal of Materials Science, 2019, 54, 10297-10311.	3.7	12
92	Ultrastable Leadâ€Free Double Perovskite Photodetectors with Imaging Capability. Advanced Materials Interfaces, 2019, 6, 1900188.	3.7	62
93	Switchable Outâ€ofâ€Plane Polarization in 2D LiAlTe ₂ . Advanced Electronic Materials, 2019, 5, 1900089.	5.1	20
94	Thermodynamic modeling of the chromium-yttrium-oxygen system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 1-10.	1.6	4
95	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	12.8	350
96	Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Applied Materials Today, 2019, 15, 203-211.	4.3	45
97	Zn-Alloyed CsPbI ₃ Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Letters, 2019, 19, 1552-1559.	9.1	395
98	Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature Communications, 2019, 10, 982.	12.8	311
99	Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 2019, 10, 815.	12.8	528
100	Dimension Engineering of High-Quality InAs Nanostructures on a Wafer Scale. Nano Letters, 2019, 19, 1632-1642.	9.1	29
101	A Parametric Three-Dimensional Phase-Field Study of the Physical Vapor Deposition Process of Metal Thin Films Aiming at Quantitative Simulations. Coatings, 2019, 9, 607.	2.6	8
102	Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10, 28.	12.8	475
103	Two-Dimensional PC ₆ with Direct Band Gap and Anisotropic Carrier Mobility. Journal of the American Chemical Society, 2019, 141, 1599-1605.	13.7	144
104	Mathematical studies of Poisson–Nernst–Planck model for membrane channels: Finite ion size effects without electroneutrality boundary conditions. Journal of Computational and Applied Mathematics, 2019, 362, 510-527.	2.0	17
105	Dopability of divalent tin containing phosphates for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type transparent conductors. Physical Review Materials, 2019, 3, .	2.4	5
106	Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3, .	2.4	20
107	EXPLICIT PEAKON SOLUTIONS TO A FAMILY OF WAVE-BREAKING EQUATIONS. Journal of Applied Analysis and Computation, 2019, 9, 1987-1998.	0.5	0
108	InSe: a two-dimensional material with strong interlayer coupling. Nanoscale, 2018, 10, 7991-7998.	5.6	102

#	Article	IF	CITATIONS
109	Design and synthesis of a 2-hydroxy-1-naphthaldehyde -based fluorescent chemosensor for selective detection of aluminium ion. Inorganica Chimica Acta, 2018, 478, 112-117.	2.4	19
110	Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter. IEEE Access, 2018, 6, 17729-17740.	4.2	164
111	Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station. Applied Energy, 2018, 222, 244-256.	10.1	20
112	Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 1019-1027.	13.7	241
113	Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ Pbl ₃ : Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 2018, 5, 1700662.	11.2	130
114	Nanoporous Sulfur-Doped Copper Oxide (Cu ₂ O _{<i>x</i>} S _{1–<i>x</i>}) for Overall Water Splitting. ACS Applied Materials & Diterfaces, 2018, 10, 745-752.	8.0	83
115	Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SnFe</mml:mi><mml: 2018,="" 97<="" b,="" physical="" review="" td=""><td>m²n²>4<td>mi:mn></td></td></mml:></mml:msub></mml:mrow></mml:math 	m²n²>4 <td>mi:mn></td>	mi:mn>
116	Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials. Npj Computational Materials, 2018, 4, .	8.7	86
117	Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2, 1700316.	8.6	95
118	<scp>Pb₅Sb₈S₁₇</scp> quantum dotâ€sensitized solar cells with an efficiency of 6% under 0.05 sun: <scp>T</scp> heoretical and experimental studies. Progress in Photovoltaics: Research and Applications, 2018, 26, 205-213.	8.1	13
119	Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ Pbl ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1704836.	14.9	112
120	Rod-shaped thiocyanate-induced abnormal band gap broadening in SCNâ^' doped CsPbBr3 perovskite nanocrystals. Nano Research, 2018, 11, 2715-2723.	10.4	44
121	A power dispatch model for a ferrochrome plant heat recovery cogeneration system. Applied Energy, 2018, 227, 180-189.	10.1	8
122	Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration. Energies, 2018, 11, 2856.	3.1	24
123	Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier. Energies, 2018, 11, 2548.	3.1	44
124	Experimental Identification of Critical Condition for Drastically Enhancing Thermoelectric Power Factor of Two-Dimensional Layered Materials. Nano Letters, 2018, 18, 7538-7545.	9.1	72
125	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	27.8	1,451
126	Multidiscipline Integrated Platform Based on Probabilistic Analysis for Manufacturing Engineering Processes. Future Internet, 2018, 10, 70.	3.8	1

#	Article	IF	CITATIONS
127	Dielectric Behavior as a Screen in Rational Searches for Electronic Materials: Metal Pnictide Sulfosalts. Journal of the American Chemical Society, 2018, 140, 18058-18065.	13.7	69
128	A Trial to Design γ/γ′ Bond Coat in Ni–Al–Cr Mode TBCs Aided by Phase-Field Simulation. Coatings, 2018, 421.	82.6	11
129	Effect of Thermal Vacancy on Thermodynamic Behaviors in BCC W Close to Melting Point: A Thermodynamic Study. Materials, 2018, 11, 1648.	2.9	8
130	Intrinsic Defect Properties in Halide Double Perovskites for Optoelectronic Applications. Physical Review Applied, 2018, 10, .	3.8	109
131	Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature Communications, 2018, 9, 4506.	12.8	212
132	Interlayer coupling in two-dimensional semiconductor materials. Semiconductor Science and Technology, 2018, 33, 093001.	2.0	29
133	Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2, 1662-1673.	24.0	297
134	Research on Degeneration Model of Neural Network for Deep Groove Ball Bearing Based on Feature Fusion. Algorithms, 2018, 11, 21.	2.1	7
135	Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers. Sensors, 2018, 18, 1248.	3.8	5
136	Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles. Electronics (Switzerland), 2018, 7, 72.	3.1	67
137	PEAKON AND CUSPON SOLUTIONS OF A GENERALIZED CAMASSA-HOLM-NOVIKOV EQUATION. Journal of Applied Analysis and Computation, 2018, 8, 1938-1958.	0.5	8
138	Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 759-772.	1.1	20
139	Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. Journal of the American Chemical Society, 2017, 139, 2630-2638.	13.7	714
140	Materials discovery at high pressures. Nature Reviews Materials, 2017, 2, .	48.7	427
141	Anatase (101)-like Structural Model Revealed for Metastable Rutile TiO ₂ (011) Surface. ACS Applied Materials & Description (101) Applied Materials & Description (101) Surfaces, 2017, 9, 7891-7896.	8.0	29
142	Computer-Assisted Inverse Design of Inorganic Electrides. Physical Review X, 2017, 7, .	8.9	70
143	Cu–In Halide Perovskite Solar Absorbers. Journal of the American Chemical Society, 2017, 139, 6718-6725.	13.7	316
144	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	13.7	723

#	Article	IF	CITATIONS
145	Effects of manganese doping on the structure evolution of small-sized boron clusters. Journal of Physics Condensed Matter, 2017, 29, 265401.	1.8	23
146	Sn2Se3: A conducting crystalline mixed valent phase change memory compound. Journal of Applied Physics, 2017, 121, .	2.5	9
147	Construction of crystal structure prototype database: methods and applications. Journal of Physics Condensed Matter, 2017, 29, 165901.	1.8	31
148	Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities. Chemistry of Materials, 2017, 29, 524-538.	6.7	135
149	A Dual-Loop Control System for Dense Medium Coal Washing Processes With Sampled and Delayed Measurements. IEEE Transactions on Control Systems Technology, 2017, 25, 2211-2218.	5.2	11
150	Discovery and ramifications of incidental Magn \tilde{A} ©li phase generation and release from industrial coal-burning. Nature Communications, 2017, 8, 194.	12.8	44
151	Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Letters, 2017, 17, 8005-8011.	9.1	672
152	Sn(II)-Containing Phosphates as Optoelectronic Materials. Chemistry of Materials, 2017, 29, 2459-2465.	6.7	17
153	Quasi-periodic wave solutions and two-wave solutions of the KdV–Sawada–Kotera–Ramani equation. Nonlinear Dynamics, 2017, 87, 1985-1993.	5.2	11
154	Comparative Research on RC Equivalent Circuit Models for Lithium-Ion Batteries of Electric Vehicles. Applied Sciences (Switzerland), 2017, 7, 1002.	2.5	151
155	Effects of Vibration on the Electrical Performance of Lithium-Ion Cells Based on Mathematical Statistics. Applied Sciences (Switzerland), 2017, 7, 802. New stable ternary alkaline-earth metal Pb(II) oxides: <mml:math< td=""><td>2.5</td><td>35</td></mml:math<>	2.5	35
156	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mrow><mml:mi>Camathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaPbO</mml:mi><mml:mn>2<td>2.4</td><td>10</td></mml:mn></mml:msub></mml:math 	2.4	10
157	Physical Review Materials, 2017, 1, . Stability, electronic structures and thermoelectric properties of binary Zn–Sb materials. Journal of Materials Chemistry C, 2016, 4, 11305-11312.	5.5	19
158	Design of ternary alkaline-earth metal Sn(<scp>ii</scp>) oxides with potential good p-type conductivity. Journal of Materials Chemistry C, 2016, 4, 4592-4599.	5.5	29
159	Intrinsic ultralow lattice thermal conductivity of the unfilled skutterudite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>FeSb</mml:mi><mml:mn>3<td>:m3.2<td>nl:zœub></td></td></mml:mn></mml:msub></mml:math>	:m 3.2 <td>nl:zœub></td>	nl: zœ ub>
160	Tellurium Hydrides at High Pressures: High-Temperature Superconductors. Physical Review Letters, 2016, 116, 057002.	7.8	132
161	Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ Pbl ₃ . Chemistry of Materials, 2016, 28, 4349-4357.	6.7	139
162	A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. Journal of Physical Chemistry Letters, 2016, 7, 597-602.	4.6	100

#	Article	IF	CITATIONS
163	High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides. Chemistry of Materials, 2016, 28, 1746-1755.	6.7	68
164	ATLAS: A real-space finite-difference implementation of orbital-free density functional theory. Computer Physics Communications, 2016, 200, 87-95.	7.5	42
165	CALYPSO structure prediction method and its wide application. Computational Materials Science, 2016, 112, 406-415.	3.0	138
166	Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides. Scientific Reports, 2015, 5, 15433.	3.3	71
167	Intrinsic Transparent Conductors without Doping. Physical Review Letters, 2015, 115, 176602.	7.8	36
168	Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	1
169	Medium Density Control for Coal Washing Dense Medium Cyclone Circuits. IEEE Transactions on Control Systems Technology, 2015, 23, 1117-1122.	5.2	14
170	N ₂ H: a novel polymeric hydronitrogen as a high energy density material. Journal of Materials Chemistry A, 2015, 3, 4188-4194.	10.3	49
171	Tuning optical properties of transparent conducting barium stannate by dimensional reduction. APL Materials, 2015, 3, .	5.1	29
172	Evolution of Electronic Structure as a Function of Layer Thickness in Group-VIB Transition Metal Dichalcogenides: Emergence of Localization Prototypes. Nano Letters, 2015, 15, 949-957.	9.1	72
173	Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation. Advances in Difference Equations, 2015, 2015, .	3.5	7
174	Materials discovery via CALYPSO methodology. Journal of Physics Condensed Matter, 2015, 27, 203203.	1.8	93
175	Stabilization of fullerene-like boron cages by transition metal encapsulation. Nanoscale, 2015, 7, 10482-10489.	5.6	72
176	Reinterpretation of the Expected Electronic Density of States of Semiconductor Nanowires. Nano Letters, 2015, 15, 88-95.	9.1	9
177	EXACT SOLITARY WAVE AND PERIODIC WAVE SOLUTIONS OF THE KAUP-KUPERSCHMIDT EQUATION. Journal of Applied Analysis and Computation, 2015, 5, 485-495.	0.5	6
178	Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	3
179	Existence of Wave Front Solutions of an Integral Differential Equation in Nonlinear Nonlocal Neuronal Network. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.7	3
180	Traveling Wave Solutions and Infinite-Dimensional Linear Spaces of Multiwave Solutions to Jimbo-Miwa Equation. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	2

#	Article	IF	CITATIONS
181	The effects of horizontal singular straight line in a generalized nonlinear Klein–Gordon model equation. Nonlinear Dynamics, 2013, 72, 789-801.	5.2	19
182	Trigonometric series with piecewise mean value bounded variation coefficients. Science China Mathematics, 2013, 56, 1661-1677.	1.7	0
183	Genetic design of enhanced valley splitting towards a spin qubit in silicon. Nature Communications, 2013, 4, 2396.	12.8	49
184	The Birth of a Type-II Nanostructure: Carrier Localization and Optical Properties of Isoelectronically Doped CdSe:Te Nanocrystals. ACS Nano, 2012, 6, 8325-8334.	14.6	15
185	Genomic Design of Strong Direct-Gap Optical Transition in Si/Ge Core/Multishell Nanowires. Nano Letters, 2012, 12, 984-991.	9.1	54
186	Absence of intrinsic spin splitting in one-dimensional quantum wires of tetrahedral semiconductors. Physical Review B, 2011 , 84 , .	3.2	24
187	Excitons and excitonic fine structures in Si nanowires: Prediction of an electronic state crossover with diameter changes. Physical Review B, 2011, 84, .	3.2	15
188	Electronic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext> CsFe </mml:mtext> </mml:mrow> <mml:mn .<="" 2010,="" 81,="" a="" alloy="" b,="" cobalt:="" compound="" iron="" its="" magnetic="" physical="" related="" review="" superconductors.="" td="" the="" to="" with=""><td>>23.2</td><td>mn></td></mml:mn></mml:mrow></mml:mrow></mml:math>	>23.2	mn>
189	Electronic structure and thermoelectric properties: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>PbBi</mml:mtext></mml:mrow><mml:mrow><mml:mnow> related intergrowth compounds. Physical Review B. 2010. 81</mml:mnow></mml:mrow></mml:msub></mml:mrow></mml:math>	·2 ³² mml:n	nn>ms
190	Electronic structure, localization, and spin-state transition in Cu-substituted <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>FeSe</mml:mtext><mml:mo>:</mml:mo><mml:msub><mml:mrow>< Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	mm:mtex	xt>Fe
191	Wide InP Nanowires with Wurtzite/Zincblende Superlattice Segments Are Type-II whereas Narrower Nanowires Become Type-I: An Atomistic Pseudopotential Calculation. Nano Letters, 2010, 10, 4055-4060.	9.1	76
192	High-pressure phase transitions of solid HF, HCl, and HBr: An <i>ab initio</i> evolutionary study. Physical Review B, 2010, 82, .	3.2	27
193	Zintl-phase compounds with mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> mml:mrow> mml:msub> mml:mrow> mml:mtext> SnSb / mml:mtext> / mml:mrow> mml:mn anions: Electronic structure and thermoelectric properties. Physical Review B, 2010, 81, . Density functional study of the overdoped iron chalcogenide mml:math	> 4: //mml:	m ʁ ᠖:m
194	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TlFe</mml:mtext></mml:mrow><mml:mn> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mn></mml:mrow></mml:mrow></mml:mrow>	0.2	30
195	Electronic structure and the rmoelectric properties of layered < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mrow > < mml:msub > < mml:mrow > < mml:mtext > PbSe-WSe < / mml:mtext > < / mml:mrow > < mn Physical Review B. 2009. 80		
196	Electronic structure ofBa(Fe,Ru)2As2andSr(Fe,Ir)2As2alloys. Physical Review B, 2009, 79, .	3.2	42
197	Density functional study of the electronic structure and magnetism of LaFeAsO alloyed with Zn. Physical Review B, 2009, 80, .	3.2	24
198	Envelope compacton and solitary pattern solutions of a generalized nonlinear Schrödinger equation. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 492-496.	1.1	10

#	Article	IF	Citations
199	Electronic correlations in the iron pnictides. Nature Physics, 2009, 5, 647-650.	16.7	317
200	Density functional study of excess Fe in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>> < mml:mı</td><td>n>¹⁵⁶mml:m</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	> < mml:mı	n> ¹⁵⁶ mml:m
201	First-principles study of the pressure-induced rutile–CaCl2 phase transition in MgF2. Solid State Communications, 2008, 145, 283-287.	1.9	23
202	Electronic structures, lattice dynamics, and electron–phonon coupling of simple cubic Ca under pressure. Solid State Communications, 2008, 146, 181-185.	1.9	41
203	Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Physical Review B, 2008, 78, .	3.2	690
204	Electronic Structure, Magnetism and Spin-Fluctuations in Fe-As Based Superconductors. Materials Research Society Symposia Proceedings, 2008, 1148, 1.	0.1	0
205	High-pressure phase transformations in CaH2. Journal of Physics Condensed Matter, 2008, 20, 045211.	1.8	24
206	Possible superconductivity in Fe-Sb based materials: Density functional study of LiFeSb. Physical Review B, 2008, 78, .	3.2	17
207	CaCl2-type high-pressure phase of magnesium hydride predicted byab initiophonon calculations. Physical Review B, 2007, 75, .	3.2	33
208	The influence of defects on the transport properties of AgSbPb ₁₈ Te ₂₀ prepared at high pressure and high temperature. Journal of Physics Condensed Matter, 2007, 19, 425219.	1.8	1
209	First-principles study of the lattice dynamics, thermodynamic properties and electron-phonon coupling of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Y</mml:mi><mml:msub><mml:mi mathvariant="normal">N < mml:msub></mml:mi></mml:msub></mml:mrow> .	3.2	42
210	Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study. Physical Review B, 2007, 75, .	3.2	39
211	Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure. Solid State Communications, 2007, 141, 610-614.	1.9	65
212	Bifurcations of smooth and nonsmooth traveling wave solutions in a generalized degasperis–procesi equation. Journal of Computational and Applied Mathematics, 2007, 205, 174-185.	2.0	14
213	New exact compacton, peakon and solitary solutions of the generalized Boussinesq-like equations with nonlinear dispersion. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 3276-3282.	1.1	3
214	Pressure-induced enhancement of electron-phonon coupling in superconductingCaC6from first principles. Physical Review B, 2006, 74, .	3.2	25
215	First-principles studies of structural and electronic properties of hexagonalBC5. Physical Review B, 2006, 73, .	3.2	75
216	Peakons and periodic cusp wave solutions in a generalized Camassa–Holm equation. Chaos, Solitons and Fractals, 2006, 30, 1238-1249.	5.1	14

#	ARTICLE	IF	CITATIONS
217	Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory. Physical Review B, 2006, 74, .	3.2	45
218	First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Physical Review B, 2005, 72, .	3.2	96
219	Electronic and crystal structures of osmium under high pressure. Physical Review B, 2005, 72, .	3.2	35
220	Bifurcations of traveling wave solutions in a coupled non-linear wave equation. Chaos, Solitons and Fractals, 2003, 17, 941-950.	5.1	23