## Andrew Elby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3336937/publications.pdf Version: 2024-02-01



ANDDEW FIRV

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Arguing about argument and evidence: Disagreements and ambiguities in science education research and practice. Science Education, 2022, 106, 285-311.                                                                                              | 3.0 | 2         |
| 2  | Video tagging as a window into teacher noticing. Journal of Mathematics Teacher Education, 2020, 23, 385-405.                                                                                                                                      | 1.8 | 28        |
| 3  | The tension between patternâ€seeking and mechanistic reasoning in explanation construction: A case from Chinese elementary science classroom. Science Education, 2020, 104, 1071-1099.                                                             | 3.0 | 12        |
| 4  | Reframing the Responsiveness Challenge: A Framing-Anchored Explanatory Framework to Account for<br>Irregularity in Novice Teachers' Attention and Responsiveness to Student Thinking. Cognition and<br>Instruction, 2020, 38, 116-152.             | 2.9 | 18        |
| 5  | Assessing mathematical sensemaking in physics through calculation-concept crossover. Physical<br>Review Physics Education Research, 2020, 16, .                                                                                                    | 2.9 | 16        |
| 6  | How curriculum developers' cognitive theories influence curriculum development. Physical Review<br>Physics Education Research, 2020, 16, .                                                                                                         | 2.9 | 1         |
| 7  | Rethinking the division of labor between tutorial writers and instructors with respect to fostering equitable team dynamics. Physical Review Physics Education Research, 2020, 16, .                                                               | 2.9 | 3         |
| 8  | Rethinking the relationship between instructors and physics education researchers. Physical Review Physics Education Research, 2020, 16, .                                                                                                         | 2.9 | 0         |
| 9  | Splits in students' beliefs about learning classical and quantum physics. International Journal of STEM Education, 2019, 6, .                                                                                                                      | 5.0 | 9         |
| 10 | Beyond Empirical Adequacy: Learning Progressions as Models and Their Value for Teachers. Cognition and Instruction, 2019, 37, 1-37.                                                                                                                | 2.9 | 21        |
| 11 | Did the Framework for Kâ€12 Science Education trample itself? A reply to "Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standardsâ€. Journal of Research in Science Teaching, 2019, 56, 518-520. | 3.3 | 5         |
| 12 | Narrative Co-construction of Stances Towards Engineers' Work in Socio-Technical Contexts.<br>Advances in STEM Education, 2019, , 251-272.                                                                                                          | 0.5 | 3         |
| 13 | Zooming Out from the Struggling Individual Student: An Account of the Cultural Construction of Engineering Ability in an Undergraduate Programming Class. Journal of Engineering Education, 2018, 107, 56-86.                                      | 3.0 | 47        |
| 14 | Supporting the Narrative Agency of a Marginalized Engineering Student. Journal of Engineering Education, 2018, 107, 186-218.                                                                                                                       | 3.0 | 47        |
| 15 | Taking an escape hatch: Managing tension in group discourse. Science Education, 2018, 102, 883-916.                                                                                                                                                | 3.0 | 17        |
| 16 | Exploring the entanglement of personal epistemologies and emotions in students' thinking. Physical<br>Review Physics Education Research, 2018, 14, .                                                                                               | 2.9 | 19        |
| 17 | Mathematical sense-making in quantum mechanics: An initial peek. Physical Review Physics Education Research, 2017, 13, .                                                                                                                           | 2.9 | 27        |
| 18 | Sophisticated epistemologies of physics versus high-stakes tests: How do elite high school students respond to competing influences about how to learn physics?. Physical Review Physics Education Research, 2016, 12, .                           | 2.9 | 8         |

ANDREW ELBY

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Connecting self-efficacy and views about the nature of science in undergraduate research experiences. Physical Review Physics Education Research, 2016, 12, .                                 | 2.9 | 14        |
| 20 | Problematizing Best Practices for Pairing in K-12 Student Design Teams. , 2015, , 26.1256.1.                                                                                                  |     | 0         |
| 21 | Theorizing Can Contribute to Marginalized Students' Agency in Engineering Persistence. , 2015, , 26.1582.1.                                                                                   |     | Ο         |
| 22 | How substance-based ontologies for gravity can be productive: A case study. Physical Review Physics<br>Education Research, 2014, 10, .                                                        | 1.7 | 25        |
| 23 | Marginalized Identities of Senseâ€Makers: Reframing Engineering Student Retention. Journal of<br>Engineering Education, 2014, 103, 8-44.                                                      | 3.0 | 69        |
| 24 | How students blend conceptual and formal mathematical reasoning in solving physics problems.<br>Science Education, 2013, 97, 32-57.                                                           | 3.0 | 99        |
| 25 | Evidence of epistemological framing in survey question misinterpretation. , 2013, , .                                                                                                         |     | 2         |
| 26 | A conceptual physics class where students found meaning in calculations. , 2013, , .                                                                                                          |     | 0         |
| 27 | Coupling epistemology and identity in explaining student interest in science. , 2013, , .                                                                                                     |     | Ο         |
| 28 | Context Dependence of Students' Views about the Role of Equations in Understanding Biology. CBE<br>Life Sciences Education, 2013, 12, 274-286.                                                | 2.3 | 29        |
| 29 | Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning. Physical Review Physics Education Research, 2013, 9, .                 | 1.7 | 34        |
| 30 | Applying beliefs and resources frameworks to the psychometric analyses of an epistemology survey.<br>Physical Review Physics Education Research, 2012, 8, .                                   | 1.7 | 5         |
| 31 | Beyond Epistemological Deficits: Dynamic explanations of engineering students' difficulties with mathematical sense-making. International Journal of Science Education, 2011, 33, 2463-2488.  | 1.9 | 50        |
| 32 | The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 2010, 94, 29-47.                                                                          | 3.0 | 63        |
| 33 | Epistemological resources and framing: a cognitive framework for helping teachers interpret and respond to their students' epistemologies. , 2010, , 409-434.                                 |     | 100       |
| 34 | Respecting tutorial instructors' beliefs and experiences: A case study of a physics teaching assistant.<br>Physical Review Physics Education Research, 2010, 6, .                             | 1.7 | 14        |
| 35 | Tutorial teaching assistants in the classroom: Similar teaching behaviors are supported by varied beliefs about teaching and learning. Physical Review Physics Education Research, 2010, 6, . | 1.7 | 29        |
| 36 | The marginalized identities of sense-makers: Reframing engineering student retention. , 2010, , .                                                                                             |     | 0         |

ANDREW ELBY

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Understanding students' difficulties in terms of coupled epistemological and affective dynamics. , 2010, , .                                               |     | 4         |
| 38 | Accounting for tutorial teaching assistants' buy-in to reform instruction. Physical Review Physics<br>Education Research, 2009, 5, .                       | 1.7 | 39        |
| 39 | Defining Personal Epistemology: A Response to Hofer & Pintrich (1997) and Sandoval (2005).<br>Journal of the Learning Sciences, 2009, 18, 138-149.         | 2.9 | 38        |
| 40 | Indicators of Understanding: What TAs Listen for in Student Responses. , 2008, , .                                                                         |     | 1         |
| 41 | Enabling Informed Adaptation of Reformed Instructional Materials. AIP Conference Proceedings, 2007,                                                        | 0.4 | 13        |
| 42 | Probing Studentsâ $\in$ $^{\mathrm{M}}$ Epistemologies Using Split Tasks. AIP Conference Proceedings, 2005, , .                                            | 0.4 | 5         |
| 43 | The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 2005, 73, 372-382.                            | 0.7 | 167       |
| 44 | Epistemological Resources: Applying a New Epistemological Framework to Science Instruction.<br>Educational Psychologist, 2004, 39, 57-68.                  | 9.0 | 187       |
| 45 | Tapping Epistemological Resources for Learning Physics. Journal of the Learning Sciences, 2003, 12, 53-90.                                                 | 2.9 | 325       |
| 46 | Helping physics students learn how to learn. American Journal of Physics, 2001, 69, S54-S64.                                                               | 0.7 | 211       |
| 47 | On the substance of a sophisticated epistemology. Science Education, 2001, 85, 554-567.                                                                    | 3.0 | 254       |
| 48 | What students' learning of representations tells us about constructivism. Journal of Mathematical Behavior, 2000, 19, 481-502.                             | 0.9 | 93        |
| 49 | Another reason that physics students learn by rote. American Journal of Physics, 1999, 67, S52-S57.                                                        | 0.7 | 64        |
| 50 | Cause and Effect in the Pilot-Wave Interpretation of Quantum Mechanics. Boston Studies in the Philosophy and History of Science, 1996, , 309-319.          | 0.9 | 17        |
| 51 | Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics.<br>Physical Review A, 1994, 49, 4213-4216.                  | 2.5 | 47        |
| 52 | Contentious Contents: For Inductive Probability. British Journal for the Philosophy of Science, 1994, 45, 193-200.                                         | 2.3 | 4         |
| 53 | The 'Decoherence' Approach to the Measurement Problem in Quantum Mechanics. PSA Proceedings of the Philosophy of Science Association, 1994, 1994, 355-365. | 0.1 | 5         |
| 54 | What makes a theory physically ?complete??. Foundations of Physics, 1993, 23, 971-985.                                                                     | 1.3 | 8         |

ANDREW ELBY

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Why ?modal? interpretations of quantum mechanics don't solve the measurement problem.<br>Foundations of Physics Letters, 1993, 6, 5-19.                                   | 0.6 | 31        |
| 56 | Why Local Realistic Theories Violate, Nontrivially, the Quantum Mechanical EPR Perfect Correlations.<br>British Journal for the Philosophy of Science, 1993, 44, 213-230. | 2.3 | 2         |
| 57 | Should We Explain the EPR Correlations Causally?. Philosophy of Science, 1992, 59, 16-25.                                                                                 | 1.0 | 15        |
| 58 | Weakening the locality conditions in algebraic nonlocality proofs. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 171, 11-16.                 | 2.1 | 8         |
| 59 | Why SQUID experiments can rule out non-invasive measurability. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 1992, 166, 17-23.                  | 2.1 | 11        |
| 60 | Reply: how is Home and Sengupta's noncontextuality condition related to locality?. Foundations of Physics Letters, 1991, 4, 455-457.                                      | 0.6 | 0         |
| 61 | A SQUID No-Go theorem without macrorealism: What SQUID's really tell us about nature.<br>Foundations of Physics, 1991, 21, 773-785.                                       | 1.3 | 17        |
| 62 | On the physical interpretation of Heywood and Redhead's algebraic impossibility theorem.<br>Foundations of Physics Letters, 1990, 3, 239-247.                             | 0.6 | 3         |
| 63 | Nonlocality and Cleason's lemma. Part 2. Stochastic theories. Foundations of Physics, 1990, 20, 1389-1397.                                                                | 1.3 | 17        |
| 64 | Critique of Home and Sengupta's derivation of a Bell inequality. Foundations of Physics Letters, 1990, 3, 317-324.                                                        | 0.6 | 2         |
| 65 | Reality and clumsiness. Physics World, 1989, 2, 45-45.                                                                                                                    | 0.0 | 0         |
| 66 | "Classical-ish― Negotiating the Boundary between Classical and Quantum Particles. , 0, , .                                                                                |     | 3         |
| 67 | Tensions and Trade-offs in Instructional Goals for Physics Courses Aimed at Engineers. , 0, , .                                                                           |     | 1         |
| 68 | "Turning away" from the Struggling Individual Student: An Account of the Cultural Construction of Engineering Ability in an Undergraduate Programming Class. , 0, , .     |     | 7         |
| 69 | Student Epistemology About Mathematical Integration In A Physics Context: A Case Study. , 0, , .                                                                          |     | Ο         |
| 70 | How Physics Teachers Model Student Thinking and Plan Instructional Responses When Using Learning-Progression-Based Assessment Information. , 0, , .                       |     | 0         |
| 71 | Connecting Self-Efficacy and Nature of Science Shifts in Undergraduate Research Experiences. , 0, , .                                                                     |     | 0         |
| 72 | "Because math― Epistemological stance or defusing social tension in quantum mechanics?. , 0, , .                                                                          |     | 2         |

| #  | Article                                                                                                                                                                      | IF | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 73 | Sense-making with Inscriptions in Quantum Mechanics. , 0, , .                                                                                                                |    | Ο         |
| 74 | Attending to Scientific Practices within Undergraduate Research Experiences. , 0, , .                                                                                        |    | 0         |
| 75 | How Engineering Students Think About the Roles and Responsibilities of Engineers with Respect to<br>Broader Social and Global Impact of Engineering and Technology. , 0, , . |    | 1         |
| 76 | The Dynamics of Perspective-taking in Discussions on Socio-technical Issues. , 0, , .                                                                                        |    | 4         |