
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333683/publications.pdf Version: 2024-02-01

ΚΑΖΗΥΛ ΤΛΟΛ

#	Article	IF	CITATIONS
1	Different colloidal particle formation process between conjugated polymer and unmodified C ₆₀ in preparation of suspension for electrophoretic deposition by reprecipitation method. Japanese Journal of Applied Physics, 2022, 61, SE1002.	1.5	0
2	Bayesian estimation of equivalent circuit parameters of photovoltaic cells. Applied Physics Express, 2021, 14, 046502.	2.4	2
3	Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle. IEICE Transactions on Electronics, 2021, E104.C, 192-193.	0.6	2
4	Effect of fullerene substituent on thermal robustness in polymer:fullerene bulk heterojunction solar cells. Japanese Journal of Applied Physics, 2020, 59, SDDD03.	1.5	4
5	Effect of fullerene substituent on low-light characteristics of polymer: fullerene bulk heterojunction solar cells. Molecular Crystals and Liquid Crystals, 2020, 705, 65-70.	0.9	2
6	Lighting flicker: a blind spot in indoor photovoltaic cell characterization. Applied Physics Express, 2020, 13, 024005.	2.4	4
7	S-Shaped Nonlinearity in Electrical Resistance of Electroactive Supercoiled Polymer Artificial Muscle. IEICE Transactions on Electronics, 2020, E103.C, 59-61.	0.6	2
8	Calculation of error in series/shunt resistance estimated from current-voltage slope using exact analytical expressions with roberts g-function. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 333-334.	1.4	4
9	Improvement of Simple Spectral Sensitivity Measurement Device Using LED. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 1527-1528.	0.2	0
10	What Do Apparent Series and Shunt Resistances in Solar Cell Estimated by <i>I</i> – <i>V</i> Slope Mean? Study with Exact Analytical Expressions. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800448.	1.8	6
11	Characteristics of PTB7â€Th:C bulk heterojunction photocells under lowâ€light illumination: Critical effect of dark parallel resistance. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700018.	1.8	8
12	Comment on "Simulation of current–voltage curves for inverted planar structure perovskite solar cells using equivalent circuit model with inductance― Applied Physics Express, 2017, 10, 059101.	2.4	3
13	Negligible effect of processing additive in polymer bulk heterojunction photovoltaic cells with unmodified fullerene. Macromolecular Research, 2017, 25, 624-628.	2.4	2
14	Validation of opposed two-diode equivalent-circuit model for S-shaped characteristic in polymer photocell by low-light characterization. Organic Electronics, 2017, 40, 8-12.	2.6	10
15	Low-light characteristics of polymer photocell with S-shaped current-voltage curve at 1 sun. Molecular Crystals and Liquid Crystals, 2017, 653, 39-43.	0.9	3
16	Characteristics of PTB7:C70 bulk heterojunction photocell prepared with halogen-free solvent at low light illumination. Polymer Bulletin, 2016, 73, 2401-2408.	3.3	6
17	Characterization of polymer bulk heterojunction photocell with unmodified C 70 prepared with halogen-free solvent for indoor light harvesting. Organic Electronics, 2016, 30, 289-295.	2.6	19
18	Note: Measuring spectral response of photocells with light-emitting diodes. Review of Scientific Instruments, 2015, 86, 126106.	1.3	1

#	Article	IF	CITATIONS
19	Parameter extraction from S-shaped current-voltage characteristics in organic photocell with opposed two-diode model: Effects of ideality factors and series resistance. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1731-1734.	1.8	8
20	Solution-processed photocells based on low energy-gap polymer and unmodified C70 composites from halogen-free solvent exceeding 5% power conversion efficiency. Solar Energy Materials and Solar Cells, 2015, 143, 52-57.	6.2	18
21	Thermally robust bulk heterojunction photocells based on PTB7:C70 composites. Solar Energy Materials and Solar Cells, 2015, 132, 15-20.	6.2	17
22	Prototyping of LED-based Spectral Response Measurement Device for Photocells. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 1293-1298.	0.2	2
23	Thermal Annealing Effect on Optical Absorption Spectra of Poly(3-hexylthiophene):Unmodified-C ₆₀ Composites. IEICE Transactions on Electronics, 2015, E98.C, 120-122.	0.6	0
24	Optimization of photovoltaic device based on poly(3-hexylthiophene):C60bulk heterojunction composites prepared with halogen-free solvent. Japanese Journal of Applied Physics, 2014, 53, 01AB01.	1.5	2
25	Effect of conjugated polyelectrolyte interlayer at cathode in bulk heterojunction photocells based on neat C70and low-energy-gap polymer prepared with halogen-free solvent. Applied Physics Express, 2014, 7, 051601.	2.4	19
26	Interplay between annealing temperature and optimum composition and fullerene aggregation effects in bulk heterojunction photocells based on poly(3-hexylthiophene) and unmodified C60. Solar Energy Materials and Solar Cells, 2014, 120, 136-142.	6.2	14
27	Solution-processed small molecular photocells with neat fullerene. Solar Energy Materials and Solar Cells, 2014, 130, 331-335.	6.2	3
28	Electrophoretic Deposition of the Thiophene-Based Copolymer and Its Composites with C60. Journal of Physical Chemistry B, 2013, 117, 1628-1632.	2.6	4
29	Bulk heterojunction photocells utilizing neat C70 and low energy-gap polymer prepared with halogen-free solvent. Solar Energy Materials and Solar Cells, 2013, 117, 194-197.	6.2	20
30	Yet another poor man's green bulk heterojunction photocells: Annealing effect and film composition dependence of photovoltaic devices using poly(3-hexylthiophene):C70 composites prepared with chlorine-free solvent. Solar Energy Materials and Solar Cells, 2013, 108, 82-86.	6.2	42
31	Temporal Change in Electric Potential Distribution and Film Thickness in Electrophoretic Deposition of Conjugated Polymer. IEICE Transactions on Electronics, 2013, E96.C, 378-380.	0.6	2
32	Preparation of Bulk Heterojunction Composite Consisting of Poly(3-hexylthiophene) and Neat C ₇₀ Using Halogen-Free Solvent. Japanese Journal of Applied Physics, 2012, 51, 030205.	1.5	10
33	Poor man's green bulk heterojunction photocells: A chlorine-free solvent for poly(3-hexylthiophene)/C60 composites. Solar Energy Materials and Solar Cells, 2012, 100, 246-250.	6.2	28
34	Conductive Polymers as Bioelectronic Materials. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 1422-1428.	0.2	4
35	Conduction current behavior during electrophoretic deposition of conductive polymer. , 2011, , .		0
36	Highly Photoluminescent Nanocrystals Based on a Gold(I) Complex and Their Electrophoretic Patterning. Langmuir, 2011, 27, 10947-10952.	3.5	9

#	Article	IF	CITATIONS
37	Culture experiments for mouse fibroblast using conductive polymers. , 2011, , .		0
38	Tuning Photoluminescent Wavelength of Water-Soluble Oligothiophene/Polymer Complex Film by Proton Bonding. Chemistry Letters, 2011, 40, 264-265.	1.3	8
39	Spontaneous stratification in composite films consisting of conjugated polymers and neat C60 prepared by electrophoretic deposition. Materials Letters, 2011, 65, 1367-1370.	2.6	6
40	New technique for the fabrication of conductive polymer/insulating polymer composite films. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2011, 174, 1-8.	0.4	1
41	Fabrication of Highly Photoluminescent Gold(I) Nanorods and their Electrophoretic Patterning. Physics Procedia, 2011, 14, 52-57.	1.2	1
42	Electric current during electrophoretic deposition of conjugated polymer: A test with various electrode distances. Physics Procedia, 2011, 14, 58-61.	1.2	3
43	Morphological Control of Conjugated Polymers. Physics Procedia, 2011, 14, 124-133.	1.2	2
44	Preparation of smooth and dense composite films consisting of MEHPPV and neat C60 by means of electrophoretic deposition. Solar Energy Materials and Solar Cells, 2011, 95, 688-692.	6.2	7
45	電気化å¦çš"手法ã«ã, ã, ãfãfªãf"ãfãf1⁄4ãf«ã®å1⁄2¢æ‹å^¶å¾¡. IEEJ Transactions on Fundamental	s and Ma teria	als,2011, 13
46	Estimation of Material Efficiency in Electrophoretic Deposition of Conjugated Polymer from Optical Absorption of Residual Suspension. IEICE Transactions on Electronics, 2011, E94-C, 193-195.	0.6	2
47	Preparation of conjugated polymer suspensions by using ultrasonic atomizer. Thin Solid Films, 2010, 519, 1044-1046.	1.8	2
48	Experimental study of culture for mouse fibroblast used conductive polymer films. Thin Solid Films, 2010, 519, 1230-1234.	1.8	12
49	Preparation of Composite Films of Conjugated Polymer and C60by Electrophoretic Deposition and Their Photovoltaic Effect. Japanese Journal of Applied Physics, 2010, 49, 101602.	1.5	4
50	Scaling Behavior in Electric Current during Electrophoretic Deposition of Conjugated Polymer. Japanese Journal of Applied Physics, 2010, 49, 061602.	1.5	3
51	MORPHOLOGY CONTROL OF NANOSTRUCTURED CONJUGATED POLYMER FILMS. , 2010, , 273-295.		0
52	Patterned Polarized Light Emission of Fluorene Derivative Based on Photoalignment. Japanese Journal of Applied Physics, 2009, 48, 120208.	1.5	8
53	Preparation of Polymer Light-Emitting Devices by Electrophoretic Deposition. Molecular Crystals and Liquid Crystals, 2009, 505, 124/[362]-129/[367].	0.9	5
54	Preparation of flat and dense conjugated polymer films from dilute solutions by means of electrophoretic deposition. Thin Solid Films, 2009, 518, 711-713.	1.8	3

#	Article	IF	CITATIONS
55	New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures. Thin Solid Films, 2009, 518, 743-749.	1.8	17
56	Electrophoretic deposition of conjugated polymer: Deposition from dilute solution and PEDOT coating effect. Synthetic Metals, 2009, 159, 851-853.	3.9	8
57	Electric current during electrophoretic deposition of conjugated polymer. Journal Physics D: Applied Physics, 2009, 42, 132001.	2.8	11
58	High material efficiency found in electrophoretic deposition of conjugated polymer. Journal Physics D: Applied Physics, 2009, 42, 172001.	2.8	10
59	Color-tuning of polymer light-emitting devices through maskless dye diffusion technique. Thin Solid Films, 2008, 516, 2723-2726.	1.8	0
60	Electrophoretic deposition of nanostructured film from colloidal suspensions of conjugated polymers. , 2008, , .		0
61	Color Tuning of Poly(N-vinylcarbazole)-Based Light-Emitting Devices through Maskless Dye-Diffusion Technique Using Phosphorescent Dyes. Japanese Journal of Applied Physics, 2008, 47, 1290-1292.	1.5	4
62	Uniform film of conjugated polymer for light-emitting device by electrophoretic deposition. Journal Physics D: Applied Physics, 2008, 41, 032001.	2.8	19
63	New Fabrication Technique of Conductive Polymer / Insulating Polymer Composite Films. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 703-709.	0.2	4
64	In-situ Measurement of Photoelectron Spectroscopy in Air of Polypyrrole during Electrochemical Undoping. IEICE Transactions on Electronics, 2008, E91-C, 1885-1886.	0.6	0
65	Size effect of polypyrrole films with anisotropy. , 2006, , .		0
66	The maskless dye diffusion technique—A proposal of patterning techniques for polymer light-emitting device. Current Applied Physics, 2006, 6, 887-890.	2.4	3
67	In situ polymerization process of polypyrrole ultrathin films. Thin Solid Films, 2006, 499, 61-72.	1.8	15
68	Preparation of nanostructured conjugated polymer films from suspension-based technique and their applications. Thin Solid Films, 2006, 499, 19-22.	1.8	7
69	Bending behaviour of polypyrrole films with anisotropy for artificial muscles. Journal Physics D: Applied Physics, 2006, 39, 2596-2599.	2.8	1
70	Red emission from poly(9,9-dioctylfluorene) doped with phosphorescent dye through maskless dye-diffusion technique. Applied Physics Letters, 2006, 89, 043508.	3.3	12
71	Heat Treatment Effect on Polymer Light-Emitting Device Based on Poly(9,9-dioctylfluorene) during Maskless Dye-Diffusion Technique. IEICE Transactions on Electronics, 2006, E89-C, 1775-1776.	0.6	0
72	Nanostructured conjugated polymer films for electroluminescent and photovoltaic applications. Thin Solid Films, 2005, 477, 187-192.	1.8	9

#	Article	IF	CITATIONS
73	Preparation of donor–acceptor nanocomposite through electrophoretic deposition. Current Applied Physics, 2005, 5, 5-8.	2.4	10
74	A self-organized bending-beam electrochemical actuator. Current Applied Physics, 2005, 5, 194-201.	2.4	18
75	Green- and White-Light-Emitting Devices Made from Poly(9,9-dioctylfluorene) by Maskless Dye Diffusion Technique. Japanese Journal of Applied Physics, 2005, 44, 4167-4170.	1.5	12
76	Application of Maskless Dye-Diffusion Technique to Conducting Polymer for Emission-Color Tuning. Molecular Crystals and Liquid Crystals, 2005, 443, 1-7.	0.9	0
77	Size Effect of Anisotropic Polypyrrole Actuator. Molecular Crystals and Liquid Crystals, 2005, 443, 137-141.	0.9	0
78	Electrophoretic deposition through colloidal suspension: A way to obtain nanostructured conjugated polymer film. Synthetic Metals, 2005, 152, 341-344.	3.9	10
79	Size Effect in Actuation Property of Anisotropic Polypyrrole Film. IEEJ Transactions on Fundamentals and Materials, 2005, 125, 1037-1040.	0.2	0
80	Loading Fullerene into a Conjugated Polymer Without Chemical Modification. Advanced Functional Materials, 2004, 14, 139-144.	14.9	33
81	Artificial muscle using conducting polymers. Electrical Engineering in Japan (English Translation of) Tj ETQq1 1	0.784314 r 0.4	gBT_/Overloc
82	A consideration of thermochromic behavior in poly(p-phenylene vinylene) derivatives. Thin Solid Films, 2003, 438-439, 187-194.	1.8	7
83	Preparation and application of nanostructured conjugated polymer film by electrophoretic deposition. Thin Solid Films, 2003, 438-439, 365-368.	1.8	18
84	Transient photocurrent in poly(3-octadecylthiophene) near the solid–liquid phase transition. Thin Solid Films, 2003, 438-439, 248-252.	1.8	3
85	Photovoltaic effects of p–n heterojunction device. Current Applied Physics, 2003, 3, 141-147.	2.4	6
86	Preparation of sheet polypyrrole with vertical anisotropy: A self-organized bending-beam actuator. Synthetic Metals, 2003, 135-136, 101-102.	3.9	8
87	Preparation of Large-Size Anisotropic Polypyrrole Film and Its Actuation Property. Japanese Journal of Applied Physics, 2003, 42, 1458-1461.	1.5	11
88	A polymer Schottky diode carrying a chimney for selective doping. Journal Physics D: Applied Physics, 2003, 36, L70-L73.	2.8	15
89	Polymer Light-Emitting Devices for Artificial Fingerprints. Japanese Journal of Applied Physics, 2003, 42, L1093-L1095.	1.5	18
90	Schottky Junction Devices with a Free-Standing Semiconductor Polymer Film Prepared by Peeling-Off Transfer Technique. Japanese Journal of Applied Physics, 2003, 42, L335-L337.	1.5	1

#	Article	IF	CITATIONS
91	Simple Recipe for Controlling Morphology of Nanostructured Conjugated Polymer Films. Japanese Journal of Applied Physics, 2003, 42, L1279-L1281.	1.5	4
92	Thermochromic behavior in novel conducting polymers at the solid-liquid phase transition. , 2003, , 479-508.		0
93	Initial Deposition Process of Polypyrrole on the Positively Charged Substrates by In Situ Polymerization Method. IEEJ Transactions on Fundamentals and Materials, 2003, 123, 1136-1140.	0.2	0
94	Photoirradiation effects on polymer light-emitting devices based on poly(3-alkylthiophene). Journal Physics D: Applied Physics, 2002, 35, 192-195.	2.8	5
95	In SituPolymerization of Polypyrrole in Alcohols: Controlling Deposition Rate and Electrical Conductivity. Japanese Journal of Applied Physics, 2002, 41, 6586-6590.	1.5	5
96	Sign Inversion of Photocarrier in Poly(3-octadecylthiophene) Associated with Solid-Liquid Phase Transition. Japanese Journal of Applied Physics, 2002, 41, L1422-L1424.	1.5	2
97	Nanostructured Conjugated Polymer Films by Electrophoretic Deposition. Advanced Functional Materials, 2002, 12, 420-424.	14.9	47
98	Electronic and optical properties of liquid-crystalline poly(p-phenylene vinylene) derivatives and their functional application. Electrical Engineering in Japan (English Translation of Denki Gakkai) Tj ETQq0 0 0 rgBT /Ov	venboek 10	Tf250 457 Td
99	Polymer devices fabricated by the maskless dye diffusion technique. Thin Solid Films, 2002, 417, 32-35.	1.8	8
100	Photoexcitations in disubstituted polyacetylene: solitons and polarons. Synthetic Metals, 2001, 116, 91-94.	3.9	11
101	Photooxidation mechanism of polymer light-emitting device and its application to optically patternable device. Synthetic Metals, 2001, 121, 1653-1654.	3.9	4
102	Actuators based on steric effect from cation insertion and extraction. Synthetic Metals, 2001, 119, 279-280.	3.9	3
103	Photovoltaic effects of MDOPPV/PPy layer. Thin Solid Films, 2001, 393, 284-290.	1.8	6
104	Photooxidation study of polymer light-emitting devices. Thin Solid Films, 2001, 393, 358-361.	1.8	5
105	Actuator based on doping/undoping-induced volume change in anisotropic polypyrrole film. Thin Solid Films, 2001, 393, 383-387.	1.8	78
106	A molecularly doping method for polymer devices: maskless dye diffusion technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 109-113.	3.5	1
107	An electroluminescent diode using liquid-crystalline conducting polymer. Thin Solid Films, 2000, 363, 9-12.	1.8	6
108	Patterned emission from polymeric light-emitting device realized by photo-irradiation in air. Thin Solid Films, 2000, 363, 195-197.	1.8	5

#	Article	IF	CITATIONS
109	Thermochromic Behavior in Poly(p-phenylene vinylene) Derivatives. Japanese Journal of Applied Physics, 2000, 39, 1913-1917.	1.5	4
110	Photoirradiation effect on polymer light-emitting device: Separation between recombination zone and photo-oxidized defects. Applied Physics Letters, 2000, 77, 2539-2541.	3.3	12
111	Photovoltaic Effect in Heterostructure Consisting of Poly(p-phenylene vinylene) Derivative and Polypyridine. Japanese Journal of Applied Physics, 2000, 39, 3623-3626.	1.5	2
112	Bending Machine Using Anisotropic Polypyrrole Films. Japanese Journal of Applied Physics, 2000, 39, 2854-2858.	1.5	24
113	Optically Patternable Polymer Light-Emitting Device. Japanese Journal of Applied Physics, 1999, 38, L833-L835.	1.5	8
114	Conducting Polymer/Insulating Polymer Composite Films Prepared by the Molecular Self-Assembly Process. Japanese Journal of Applied Physics, 1999, 38, 3736-3741.	1.5	7
115	Three-Color Polymer Light-Emitting Devices Patterned by Maskless Dye Diffusion onto Prepatterned Electrode. Japanese Journal of Applied Physics, 1999, 38, L1143-L1145.	1.5	36
116	Polypyrrole Films with Anisotropy for Artificial Muscles and Examination of Bending Behavior. Japanese Journal of Applied Physics, 1999, 38, L1070-L1072.	1.5	22
117	Photoinduced modification of photoluminescent and electroluminescent properties in poly(p-phenylene vinylene) derivative. Journal of Applied Physics, 1999, 86, 3134-3139.	2.5	38
118	Electronic states at conducting polymer/conducting oxide interfaces observed using a low-energy photoelectron spectroscopic method. Applied Physics Letters, 1999, 75, 226-228.	3.3	16
119	Excitation Dynamics in Disubstituted Polyacetylene. Physical Review Letters, 1999, 82, 4058-4061.	7.8	47
120	Preparation and properties of carbonized films from conducting poly(naphthalene vinylene). Synthetic Metals, 1999, 103, 2567-2568.	3.9	2
121	Polypyrrole films with anisotropy. Synthetic Metals, 1999, 102, 1321-1322.	3.9	8
122	A photoelectron emission study of conducting polymer/metal interfaces. Synthetic Metals, 1999, 102, 975.	3.9	3
123	Percolation in carrier transport in FET with dye doped conducting polymers. Synthetic Metals, 1999, 102, 981.	3.9	4
124	Photocell with heterojunction of donor /acceptor polymers. Synthetic Metals, 1999, 102, 982-983.	3.9	22
125	Preparation of conducting polymer/insulating polymer composite films using molecular self-assembly process. Synthetic Metals, 1999, 102, 1253.	3.9	3
126	Photoluminescence and Electroluminescence in Polyacetylene Derivatives. Synthetic Metals, 1999, 102, 1159.	3.9	10

#	Article	IF	CITATIONS
127	Electronic energy states of organic interfaces studied by low-energy ultraviolet photoemission spectroscopy. Journal of Applied Physics, 1999, 86, 2110-2115.	2.5	34
128	Photoinduced charge separation in photovoltaic cell with heterojunction of p- and n-type conjugated polymers. Thin Solid Films, 1998, 331, 76-81.	1.8	57
129	Photophysical properties of a new C60-derivative and its composite with poly(3-dodecylthiophene). Solid State Communications, 1998, 105, 345-349.	1.9	2
130	Photoluminescence and Electroluminescence in Polymer Mixture of Poly(alkylphenylacetylene) and Poly(diphenylacetylene) Derivatives. Japanese Journal of Applied Physics, 1998, 37, L180-L183.	1.5	13
131	Optical Patterning of Polymer Light-Emitting Device. Japanese Journal of Applied Physics, 1998, 37, L1181-L1183.	1.5	23
132	Negative Creeping Discharge Characteristics of a Gas/Solid Composite Insulation System under Pulse Voltages. Japanese Journal of Applied Physics, 1998, 37, 6595-6600.	1.5	7
133	Hole injection from diamond into conducting polymer. Journal of Applied Physics, 1998, 84, 5635-5638.	2.5	17
134	Photoluminescence, Electroluminescence, Lasing and Novel Characteristics in Photonic Crystal, Synthetic Opal, of Conducting Polymers, Polyacetylene Derivatives. Molecular Crystals and Liquid Crystals, 1998, 322, 253-262.	0.3	2
135	Studies on Electronic States at the Organic Nanointerface Using Low-Energy Photoelectron Spectroscopic Method. IEEJ Transactions on Fundamentals and Materials, 1998, 118, 1347-1354.	0.2	3
136	Characteristics of Heterojunction Utilizing Conducting Polymer and Diamond Film on Si. Japanese Journal of Applied Physics, 1997, 36, L1678-L1680.	1.5	7
137	Characteristics of Poly(p-pyridyl vinylene)/Poly(3-alkylthiophene) Heterojunction Photocell. Japanese Journal of Applied Physics, 1997, 36, L306-L309.	1.5	40
138	Properties of Light-Emitting Diodes Fabricated from Self-Assembled Multilayer Heterostructures of Poly(p-pyridyl vinylene). Japanese Journal of Applied Physics, 1997, 36, 5322-5328.	1.5	12
139	Conducting Polymer Color Sensor. Japanese Journal of Applied Physics, 1997, 36, L1351-L1353.	1.5	56
140	Emission Characteristics of Poly[(tetraalkyldisilanylene)-p-oligophenylene]s. Japanese Journal of Applied Physics, 1997, 36, L1548-L1551.	1.5	6
141	Light Emitting Diode with Porous Silicon/Conducting Polymer Heterojunction. Japanese Journal of Applied Physics, 1997, 36, L418-L420.	1.5	8
142	Field-Effect Mobility of Molecularly Doped Poly(3-hexylthiophene). Japanese Journal of Applied Physics, 1997, 36, L718-L720.	1.5	24
143	The Optical Properties of Porous Opal Crystals Infiltrated with Organic Molecules. Japanese Journal of Applied Physics, 1997, 36, L714-L717.	1.5	73
144	Electrical and Optical Properties of Conducting Polymer with Quinoid Structure. Japanese Journal of Applied Physics, 1997, 36, 3744-3749.	1.5	1

#	Article	IF	CITATIONS
145	Properties of light-emitting diodes fabricated from self-assembled multilayer heterostructures of poly(p-pyridyl vinylene). Journal Physics D: Applied Physics, 1997, 30, 2364-2371.	2.8	8
146	Effect of Alkyl and Aromatic Substituents on Blue Electroluminescence in Polyacetylene Derivatives. Japanese Journal of Applied Physics, 1997, 36, L302-L305.	1.5	34
147	Effects of C\$_{f 60}\$ Doping on Electrical and Optical Properties of Poly[(disilanylene)oligophenylenes]. Japanese Journal of Applied Physics, 1997, 36, L372-L375.	1.5	25
148	Spectral Narrowing of Emission in Di-substituted Polyacetylene. Japanese Journal of Applied Physics, 1997, 36, L1268-L1271.	1.5	25
149	Optical properties and electronic structure of poly(1,4-bis(2-thienyl)-2,5-dialkoxy phenylene). Journal Physics D: Applied Physics, 1997, 30, 2063-2068.	2.8	27
150	Effect of Molecular Structure of Substituents on Green Electroluminescence in Disubstituted Acetylene Polymers. Japanese Journal of Applied Physics, 1997, 36, 3740-3743.	1.5	25
151	Optical properties of poly(disilanylene oligophenylenes). , 1997, 3145, 192.		1
152	Studies of Raman scattering in novel disubstituted acetylene polymers. , 1997, , .		3
153	Charge Transfer in Fullerene-Conducting Polymer Compositex: Electronic and Excitonic Properties. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1359-1386.	0.6	5
154	Electroluminescence in conducting polymers based on poly(phenylene ethynylene). Synthetic Metals, 1997, 85, 1273-1274.	3.9	32
155	Donor polymer (PAT6) — acceptor polymer (CNPPV) fractal network photocells. Synthetic Metals, 1997, 85, 1305-1306.	3.9	31
156	Optical properties and electroluminescence characteristics of polyacetylene derivatives dependent on substituent and layer structure. Synthetic Metals, 1997, 91, 283-287.	3.9	35
157	Microwave heating effect on two Josephson-junction systems in granular PAT12î—,C60î—,Rb composites: low-field microwave absorption study. Physica C: Superconductivity and Its Applications, 1997, 277, 277-284.	1.2	7
158	Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems. IEEE Transactions on Electron Devices, 1997, 44, 1315-1324.	3.0	87
159	Flux trapping on multi-superconducting phase PAT12-C60î—,Rb composite: Low-field microwave absorption study. Solid State Communications, 1997, 103, 607-614.	1.9	3
160	Optical properties of disubstituted acetylene polymers. , 1997, , .		14
161	Blue-Green Electroluminescence in Copolymer Based on Poly(1,4-phenylene ethynylene). Japanese Journal of Applied Physics, 1996, 35, L251-L253.	1.5	32
162	Fullerene-conducting polymer composites: intrinsic charge transfer processes and doping effects. Synthetic Metals, 1996, 77, 127-137.	3.9	21

#	Article	IF	CITATIONS
163	Ground state charge transfer in fullerene-polyalkylthiophene composites: ESR and iodine doping effect. Synthetic Metals, 1996, 77, 155-159.	3.9	23
164	Alkali-metal doping of fullerene-conducting polymer composite: evolution of conductivity and ESR. Synthetic Metals, 1996, 77, 291-297.	3.9	6
165	Electrical and optical properties of molecularly doped conducting polymers. Synthetic Metals, 1996, 78, 301-312.	3.9	27
166	Novel properties of new type conducting and insulating polymers and their composites. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3, 331-344.	2.9	24
167	Multiphase superconductivity in OO-PPV/C60 composite doped by alkali metals low-field microwave absorption and SQUID study. Physica C: Superconductivity and Its Applications, 1996, 264, 161-171.	1.2	13
168	Polymeric Bipolar Thin-Film Transistor Utilizing Conducting Polymer Containing Electron Transport Dye. Japanese Journal of Applied Physics, 1996, 35, L944-L946.	1.5	55
169	Fabrication of Multilayered Conducting Polymer Heterostructure by Self-Assembly Technique and Its Optical and Electrical Properties. Japanese Journal of Applied Physics, 1996, 35, L741-L744.	1.5	29
170	Optical Properties and Blue and Green Electroluminescence in Soluble Disubstituted Acetylene Polymers. Japanese Journal of Applied Physics, 1996, 35, L1138-L1141.	1.5	80
171	Photonics of fullerene-conducting polymer composites and multilayered structures: new results and prospects. , 1995, , .		0
172	Granular superconductivity in a conducting polymer-fullerene-alkali metal composite. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 317-326.	2.1	23
173	Optical Properties of Perfluoroalkylated Poly(diphenylacetylene). Japanese Journal of Applied Physics, 1995, 34, L1083-L1085.	1.5	40
174	Photophysical properties of fullerene-conducting polymer system. Synthetic Metals, 1995, 70, 1317-1320.	3.9	10
175	Effects of C60 on conducting polymer with small band gap. Synthetic Metals, 1995, 70, 1347-1348.	3.9	8
176	<i>In-situ</i> Measurement of Ionization Potential of Conjugated Polymer during Electrochemical Doping Using Photoelectron Spectroscopy in Air. Applied Physics Express, 0, 1, 071801.	2.4	4
177	Performance evaluation method of dye-sensitized solar cell under modulated illumination. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.9	1
178	Bayesian Estimation of Equivalent Circuit Parameters of Photovoltaic Cell with Sâ€Shaped Current–Voltage Characteristic. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100403.	1.8	0