Wanqiu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of TAO/TRITON and Argo in tropical Pacific observing system: An OSSE study for multiple time scale variability. Journal of Climate, 2021, , 1-56.	3.2	1
2	Climate Process Team: Improvement of Ocean Component of NOAA Climate Forecast System Relevant to Maddenâ€Julian Oscillation Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002658.	3.8	3
3	Intraseasonal Surface Salinity Variability and the MJO in a Climate Model. Geophysical Research Letters, 2020, 47, e2020GL088997.	4.0	6
4	Simulation of Deep Cycle Turbulence by a Global Ocean General Circulation Model. Geophysical Research Letters, 2020, 47, e2020GL088384.	4.0	7
5	Dependence of MJO Predictability on Convective Parameterizations. Journal of Climate, 2020, 33, 4739-4750.	3.2	6
6	Role of SST feedback in the prediction of the boreal summer monsoon intraseasonal oscillation. Climate Dynamics, 2019, 53, 3861-3875.	3.8	6
7	Subseasonal to Seasonal Prediction of Wintertime Northern Hemisphere Extratropical Cyclone Activity by S2S and NMME Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12057-12077.	3.3	17
8	The Indian Summer Monsoon Intraseasonal Oscillations in CFSv2 Forecasts: Biases and Importance of Improving Air–Sea Interaction Processes. Journal of Climate, 2018, 31, 5351-5370.	3.2	24
9	Impacts of the Madden–Julian Oscillation on Storm-Track Activity, Surface Air Temperature, and Precipitation over North America. Journal of Climate, 2018, 31, 6113-6134.	3.2	51
10	Impacts of Different Cumulus Schemes on the Pathways through which SST Provides Feedback to the Madden–Julian Oscillation. Journal of Climate, 2018, 31, 5559-5579.	3.2	6
11	Bay of <scp>B</scp> engal salinity stratification and <scp>I</scp> ndian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. Journal of Geophysical Research: Oceans, 2017, 122, 4291-4311.	2.6	52
12	Importance of the Vertical Resolution in Simulating SST Diurnal and Intraseasonal Variability in an Oceanic General Circulation Model. Journal of Climate, 2017, 30, 3963-3978.	3.2	23
13	Importance of convective parameterization in ENSO predictions. Geophysical Research Letters, 2017, 44, 6334-6342.	4.0	27
14	Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. Journal of Geophysical Research: Oceans, 2017, 122, 4312-4328.	2.6	60
15	Simulations of MJO Propagation across the Maritime Continent: Impacts of SST Feedback. Journal of Climate, 2017, 30, 1689-1704.	3.2	24
16	Toward Understanding the Diverse Impacts of Air‣ea Interactions on MJO Simulations. Journal of Geophysical Research: Oceans, 2017, 122, 8855-8875.	2.6	13
17	Prediction skill and predictability of Eurasian snow cover fraction in the <scp>NCEP</scp> Climate Forecast System version 2 reforecasts. International Journal of Climatology, 2016, 36, 4071-4084.	3.5	11
18	Intraseasonal Variability of SST and Precipitation in the Arabian Sea during the Indian Summer Monsoon: Impact of Ocean Mixed Layer Depth. Journal of Climate, 2016, 29, 7889-7910.	3.2	35

Wanqiu Wang

#	Article	IF	CITATIONS
19	Vertical structure and physical processes of the Maddenâ€Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4718-4748.	3.3	332
20	Distinctive Roles of Air–Sea Coupling on Different MJO Events: A New Perspective Revealed from the DYNAMO/CINDY Field Campaign*. Monthly Weather Review, 2015, 143, 794-812.	1.4	42
21	Multi-week prediction of South-East Asia rainfall variability during boreal summer in CFSv2. Climate Dynamics, 2015, 45, 493-509.	3.8	5
22	What is the Role of the Sea Surface Temperature Uncertainty in the Prediction of Tropical Convection Associated with the MJO?. Monthly Weather Review, 2015, 143, 3156-3175.	1.4	22
23	The NCEP Climate Forecast System Version 2. Journal of Climate, 2014, 27, 2185-2208.	3.2	2,402
24	How Much of Monthly Subsurface Temperature Variability in the Equatorial Pacific Can Be Recovered by the Specification of Sea Surface Temperatures?. Journal of Climate, 2014, 27, 1559-1577.	3.2	18
25	MJO prediction in the NCEP Climate Forecast System version 2. Climate Dynamics, 2014, 42, 2509-2520.	3.8	116
26	Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dynamics, 2013, 41, 1067-1081.	3.8	87
27	MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models. Journal of Climate, 2013, 26, 6185-6214.	3.2	286
28	Lagged Ensembles, Forecast Configuration, and Seasonal Predictions. Monthly Weather Review, 2013, 141, 3477-3497.	1.4	25
29	Prediction Skill and Bias of Tropical Pacific Sea Surface Temperatures in the NCEP Climate Forecast System Version 2. Journal of Climate, 2013, 26, 5358-5378.	3.2	104
30	Seasonal Prediction of Arctic Sea Ice Extent from a Coupled Dynamical Forecast System. Monthly Weather Review, 2013, 141, 1375-1394.	1.4	111
31	Sea Surface Temperature–Precipitation Relationship in Different Reanalyses. Monthly Weather Review, 2013, 141, 1118-1123.	1.4	41
32	Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1312-1328.	3.3	62
33	Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). Journal of Geophysical Research, 2012, 117, .	3.3	39
34	Tropical intraseasonal rainfall variability in the CFSR. Climate Dynamics, 2012, 38, 2191-2207.	3.8	20
35	An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Climate Dynamics, 2012, 38, 2017-2035. 	3.8	90
36	How important is intraseasonal surface wind variability to real-time ENSO prediction?. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	24

Wanqiu Wang

#	Article	IF	CITATIONS
37	Representation of MJO Variability in the NCEP Climate Forecast System. Journal of Climate, 2011, 24, 4676-4694.	3.2	74
38	An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dynamics, 2011, 37, 1601-1620.	3.8	144
39	Sensitivity of Dynamical Intraseasonal Prediction Skills to Different Initial Conditions. Monthly Weather Review, 2011, 139, 2572-2592.	1.4	60
40	An Assessment of the CFS Real-Time Seasonal Forecasts. Weather and Forecasting, 2010, 25, 950-969.	1.4	99
41	The Madden–Julian Oscillation Simulated in the NCEP Climate Forecast System Model: The Importance of Stratiform Heating. Journal of Climate, 2010, 23, 4770-4793.	3.2	71
42	An Evaluation of Precipitation Forecasts from Operational Models and Reanalyses Including Precipitation Variations Associated with MJO Activity. Monthly Weather Review, 2010, 138, 4542-4560.	1.4	26
43	The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 2010, 91, 1015-1058.	3.3	4,166
44	Impacts of Ocean Surface on the Northward Propagation of the Boreal Summer Intraseasonal Oscillation in the NCEP Climate Forecast System. Journal of Climate, 2009, 22, 6561-6576.	3.2	54
45	The Role of Long-Term Trends in Seasonal Predictions: Implication of Global Warming in the NCEP CFS. Weather and Forecasting, 2009, 24, 965-973.	1.4	18
46	Evaluation of MJO Forecast Skill from Several Statistical and Dynamical Forecast Models. Journal of Climate, 2009, 22, 2372-2388.	3.2	134
47	The Boreal Summer Intraseasonal Oscillation Simulated in the NCEP Climate Forecast System: The Effect of Sea Surface Temperature. Monthly Weather Review, 2007, 135, 1807-1827.	1.4	112
48	Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 2006, 27, 573-592.	3.8	180
49	An Improved In Situ and Satellite SST Analysis for Climate. Journal of Climate, 2002, 15, 1609-1625.	3.2	3,798