Derek C Radisky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3335533/publications.pdf

Version: 2024-02-01

		18482	17592
189	15,721	62	121
papers	citations	h-index	g-index
192	192	192	20394
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Putting tumours in context. Nature Reviews Cancer, 2001, 1, 46-54.	28.4	1,892
2	Rac $1b$ and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 2005, 436, 123-127.	27.8	1,159
3	The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation, 2002, 70, 537-546.	1.9	542
4	Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 201-212.	2.7	408
5	Phenotypic Reversion or Death of Cancer Cells by Altering Signaling Pathways in Three-Dimensional Contexts. Journal of the National Cancer Institute, 2002, 94, 1494-1503.	6.3	392
6	Epithelial-mesenchymal transition. Journal of Cell Science, 2005, 118, 4325-4326.	2.0	373
7	Immune-Induced Epithelial to Mesenchymal Transition <i>In vivo</i> Generates Breast Cancer Stem Cells. Cancer Research, 2009, 69, 2887-2895.	0.9	369
8	Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of Cell Biology, 2004, 164, 603-612.	5.2	353
9	Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?. Journal of Cellular Biochemistry, 2007, 101, 830-839.	2.6	307
10	The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Scientific Reports, 2016, 6, 30751.	3.3	299
11	Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget, 2014, 5, 2736-2749.	1.8	290
12	The Yeast Frataxin Homologue Mediates Mitochondrial Iron Efflux. Journal of Biological Chemistry, 1999, 274, 4497-4499.	3.4	258
13	TGFβ/TNFα-Mediated Epithelial–Mesenchymal Transition Generates Breast Cancer Stem Cells with a Claudin-Low Phenotype. Cancer Research, 2011, 71, 4707-4719.	0.9	256
14	Microenvironmental Regulators of Tissue Structure and Function Also Regulate Tumor Induction and Progression: The Role of Extracellular Matrix and Its Degrading Enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 343-356.	1.1	242
15	AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene, 2014, 33, 1316-1324.	5.9	235
16	Epithelial-Mesenchymal Transition: General Principles and Pathological Relevance with Special Emphasis on the Role of Matrix Metalloproteinases. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011908-a011908.	5.5	231
17	Mechanisms of Disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression?. Nature Clinical Practice Oncology, 2008, 5, 280-290.	4.3	218
18	Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clinical and Experimental Metastasis, 2008, 25, 593-600.	3.3	211

#	Article	IF	Citations
19	Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. Journal of the American Chemical Society, 1993, 115, 1632-1638.	13.7	203
20	Understanding the Premalignant Potential of Atypical Hyperplasia through Its Natural History: A Longitudinal Cohort Study. Cancer Prevention Research, 2014, 7, 211-217.	1.5	192
21	Matrix Metalloproteinase 3 Is a Mediator of Pulmonary Fibrosis. American Journal of Pathology, 2011, 179, 1733-1745.	3.8	174
22	Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4134-4139.	7.1	173
23	Epithelial-Mesenchymal Transition and the Stem Cell Phenotype. Cell Stem Cell, 2008, 2, 511-512.	11.1	171
24	MYC suppresses cancer metastasis by direct transcriptional silencing of $\hat{l}_{\pm \nu}$ and \hat{l}^2 3 integrin subunits. Nature Cell Biology, 2012, 14, 567-574.	10.3	162
25	Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO Journal, 2008, 27, 2829-2838.	7.8	161
26	ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-ÎB-dependent activation of Snail. Oncotarget, 2014, 5, 2827-2838.	1.8	158
27	Tumors are unique organs defined by abnormal signaling and context. Seminars in Cancer Biology, 2001, 11, 87-95.	9.6	156
28	Neuronal Pentraxin 2 Supports Clear Cell Renal Cell Carcinoma by Activating the AMPA-Selective Glutamate Receptor-4. Cancer Research, 2014, 74, 4796-4810.	0.9	155
29	Localized Smooth Muscle Differentiation Is Essential for Epithelial Bifurcation during Branching Morphogenesis of the Mammalian Lung. Developmental Cell, 2015, 34, 719-726.	7.0	145
30	Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochemical Journal, 1998, 336, 201-205.	3.7	137
31	Regulation of Transition Metal Transport across the Yeast Plasma Membrane. Journal of Biological Chemistry, 1999, 274, 4481-4484.	3.4	133
32	Stromal induction of breast cancer: Inflammation and invasion. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 279-287.	5.7	127
33	Change in cell shape is required for matrix metalloproteinaseâ€induced epithelialâ€mesenchymal transition of mammary epithelial cells. Journal of Cellular Biochemistry, 2008, 105, 25-33.	2.6	120
34	Matrix metalloproteinases as drivers and therapeutic targets in breast cancer. Frontiers in Bioscience - Landmark, 2015, 20, 1144-1163.	3.0	118
35	Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer Stem-like Cells. Cancer Research, 2016, 76, 5277-5287.	0.9	116
36	Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. Journal of Cellular Biochemistry, 2017, 118, 3531-3548.	2.6	105

3

#	Article	IF	Citations
37	Microenvironmental Influences that Drive Progression from Benign Breast Disease to Invasive Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 389-397.	2.7	104
38	Immune Promotion of Epithelial-mesenchymal Transition and Generation of Breast Cancer Stem Cells. Cancer Research, 2010, 70, 3005-3008.	0.9	99
39	Matrix metalloproteinase-induced epithelial–mesenchymal transition: Tumor progression at Snail's pace. International Journal of Biochemistry and Cell Biology, 2007, 39, 1082-1088.	2.8	98
40	Mechanically patterning the embryonic airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9230-9235.	7.1	98
41	Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial–mesenchymal transition. Molecular Biology of the Cell, 2012, 23, 4097-4108.	2.1	97
42	Order and Disorder: The Role of Extracellular Matrix in Epithelial Cancer. Cancer Investigation, 2002, 20, 139-153.	1.3	95
43	Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nature Reviews Molecular Cell Biology, 2009, 10, 228-234.	37.0	95
44	Mammary Involution and Breast Cancer Risk: Transgenic Models and Clinical Studies. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 181-191.	2.7	94
45	A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. Nucleic Acids Research, 2011, 39, e100-e100.	14.5	94
46	Matrix Metalloproteinase Induction of Rac1b, a Key Effector of Lung Cancer Progression. Science Translational Medicine, 2012, 4, 142ra95.	12.4	91
47	Extracellular matrix proteins regulate epithelial–mesenchymal transition in mammary epithelial cells. Differentiation, 2013, 86, 126-132.	1.9	90
48	Matrix Metalloproteinase-10 (MMP-10) Interaction with Tissue Inhibitors of Metalloproteinases TIMP-1 and TIMP-2. Journal of Biological Chemistry, 2012, 287, 15935-15946.	3.4	88
49	Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development (Cambridge), 2017, 144, 4328-4335.	2.5	88
50	CANCER: Respect Thy Neighbor!. Science, 2004, 303, 775-777.	12.6	87
51	Flat epithelial atypia and risk of breast cancer: A Mayo cohort study. Cancer, 2015, 121, 1548-1555.	4.1	85
52	Association Between Mammographic Density and Age-Related Lobular Involution of the Breast. Journal of Clinical Oncology, 2010, 28, 2207-2212.	1.6	84
53	Detection of Redundant Fusion Transcripts as Biomarkers or Disease-Specific Therapeutic Targets in Breast Cancer. Cancer Research, 2012, 72, 1921-1928.	0.9	83
54	Neuropilin-1 Upholds Dedifferentiation and Propagation Phenotypes of Renal Cell Carcinoma Cells by Activating Akt and Sonic Hedgehog Axes. Cancer Research, 2008, 68, 8667-8672.	0.9	82

#	Article	IF	Citations
55	Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nature Communications, 2015, 6, 6200.	12.8	79
56	Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes and Cancer, 2015, 6, 480-489.	1.9	79
57	Tissue composition of mammographically dense and non-dense breast tissue. Breast Cancer Research and Treatment, 2012, 131, 267-275.	2.5	72
58	Sclerosing adenosis and risk of breast cancer. Breast Cancer Research and Treatment, 2014, 144, 205-212.	2.5	72
59	Epimorphin Mediates Mammary Luminal Morphogenesis through Control of C/EBPβ. Journal of Cell Biology, 2001, 153, 785-794.	5.2	67
60	Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends in Cell Biology, 2003, 13, 426-434.	7.9	66
61	Smooth muscle differentiation shapes domain branches during mouse lung development. Development (Cambridge), 2019, 146, .	2.5	66
62	Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Research and Treatment, 2014, 144, 539-549.	2.5	65
63	Reactivation of Suppressed RhoB is a Critical Step for the Inhibition of Anaplastic Thyroid Cancer Growth. Cancer Research, 2009, 69, 1536-1544.	0.9	64
64	Host epithelial geometry regulates breast cancer cell invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19632-19637.	7.1	64
65	Histologic findings in normal breast tissues: comparison to reduction mammaplasty and benign breast disease tissues. Breast Cancer Research and Treatment, 2012, 133, 169-177.	2.5	64
66	Complex fibroadenoma and breast cancer risk: a Mayo Clinic Benign Breast Disease Cohort Study. Breast Cancer Research and Treatment, 2015, 153, 397-405.	2.5	61
67	Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO Journal, 2011, 30, 2662-2674.	7.8	59
68	Effective Targeting of Estrogen Receptor–Negative Breast Cancers with the Protein Kinase D Inhibitor CRT0066101. Molecular Cancer Therapeutics, 2015, 14, 1306-1316.	4.1	59
69	Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion. Cancer Informatics, 2015, 14s3, CIN.S18965.	1.9	58
70	Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Research, 2017, 19, 8.	5.0	58
71	Matrix metalloproteinase-induced genomic instability. Current Opinion in Genetics and Development, 2006, 16, 45-50.	3.3	56
72	Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Research and Treatment, 2010, 124, 27-38.	2.5	56

#	Article	IF	Citations
73	Involvement of hnRNP A1 in the matrix metalloproteaseâ€3â€dependent regulation of Rac1 preâ€mRNA splicing. Journal of Cellular Biochemistry, 2012, 113, 2319-2329.	2.6	56
74	Pseudoangiomatous Stromal Hyperplasia and Breast Cancer Risk. Annals of Surgical Oncology, 2010, 17, 3269-3277.	1.5	52
75	Matrix Metalloproteinase-Induced Malignancy in Mammary Epithelial Cells. Cells Tissues Organs, 2007, 185, 104-110.	2.3	51
76	Non-classical export of epimorphin and its adhesion to $\hat{l}\pm v$ -integrin in regulation of epithelial morphogenesis. Journal of Cell Science, 2007, 120, 2032-2043.	2.0	51
77	Model for Individualized Prediction of Breast Cancer Risk After a Benign Breast Biopsy. Journal of Clinical Oncology, 2015, 33, 923-929.	1.6	51
78	Macrophagic "Crown-like Structures―Are Associated with an Increased Risk of Breast Cancer in Benign Breast Disease. Cancer Prevention Research, 2018, 11, 113-119.	1.5	50
79	Standardized measures of lobular involution and subsequent breast cancer risk among women with benign breast disease: a nested case–control study. Breast Cancer Research and Treatment, 2016, 159, 163-172.	2.5	48
80	Extent of atypical hyperplasia stratifies breast cancer risk in 2 independent cohorts of women. Cancer, 2016, 122, 2971-2978.	4.1	48
81	miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Research, 2011, 13, 110.	5.0	47
82	PRSS3/Mesotrypsin Is a Therapeutic Target for Metastatic Prostate Cancer. Molecular Cancer Research, 2012, 10, 1555-1566.	3.4	47
83	Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development. Clinical Cancer Research, 2017, 23, 3945-3952.	7.0	46
84	Tumor Cell–Derived MMP3 Orchestrates Rac1b and Tissue Alterations That Promote Pancreatic Adenocarcinoma. Molecular Cancer Research, 2014, 12, 1430-1439.	3.4	45
85	EGFR as a prognostic biomarker and therapeutic target in ovarian cancer: evaluation of patient cohort and literature review. Genes and Cancer, 2017, 8, 589-599.	1.9	45
86	Novel Breast Tissue Feature Strongly Associated With Risk of Breast Cancer. Journal of Clinical Oncology, 2009, 27, 5893-5898.	1.6	44
87	Matrix Metalloproteinase-induced Fibrosis and Malignancy in Breast and Lung. Proceedings of the American Thoracic Society, 2008, 5, 316-322.	3.5	43
88	NF-l [®] B links oestrogen receptor signalling and EMT. Nature Cell Biology, 2007, 9, 361-363.	10.3	39
89	PEGylation Extends Circulation Half-Life While Preserving In Vitro and In Vivo Activity of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1). PLoS ONE, 2012, 7, e50028.	2.5	39
90	Nitric oxide induces gelatinase A (matrix metalloproteinase 2) during rat embryo implantation. Fertility and Sterility, 2002, 78, 1278-1287.	1.0	38

#	Article	IF	CITATIONS
91	The $P2\hat{a}\in^2$ residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochemical Journal, 2011, 440, 95-105.	3.7	37
92	Extracellular matrix as a contextual determinant of transforming growth factor- \hat{l}^2 signaling in epithelial-mesenchymal transition and in cancer. Cell Adhesion and Migration, 2014, 8, 588-594.	2.7	37
93	Bioinformatics and DNA-extraction strategies to reliably detect genetic variants from FFPE breast tissue samples. BMC Genomics, 2019, 20, 689.	2.8	37
94	Cell Plasticity in Lung Injury and Repair: Report from an NHLBI Workshop, April 19-20, 2010. Proceedings of the American Thoracic Society, 2011, 8, 215-222.	3.5	36
95	Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. Oncotarget, 2018, 9, 3-20.	1.8	35
96	Aurora-A kinase oncogenic signaling mediates TGF-Î ² -induced triple-negative breast cancer plasticity and chemoresistance. Oncogene, 2021, 40, 2509-2523.	5.9	34
97	The 19-Amino Acid Insertion in the Tumor-associated Splice Isoform Rac1b Confers Specific Binding to p120 Catenin. Journal of Biological Chemistry, 2010, 285, 19153-19161.	3.4	33
98	Triggering the landslide: The tumor-promotional effects of myofibroblasts. Experimental Cell Research, 2013, 319, 1657-1662.	2.6	33
99	MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Letters, 2021, 507, 1-12.	7.2	33
100	Benign Breast Disease and the Risk of Subsequent Breast Cancer in African American Women. Cancer Prevention Research, 2012, 5, 1375-1380.	1.5	32
101	Growth of lung cancer cells in three-dimensional microenvironments reveals key features of tumor malignancy. Integrative Biology (United Kingdom), 2012, 4, 440-448.	1.3	32
102	Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer. Oncotarget, 2014, 5, 11054-11063.	1.8	32
103	Clinicopathologic features of breast cancers that develop in women with previous benign breast disease. Cancer, 2016, 122, 378-385.	4.1	31
104	Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy. Biochemical Journal, 2016, 473, 1329-1341.	3.7	30
105	Homology with Vesicle Fusion Mediator Syntaxin-1a Predicts Determinants of Epimorphin/Syntaxin-2 Function in Mammary Epithelial Morphogenesis. Journal of Biological Chemistry, 2009, 284, 6877-6884.	3.4	29
106	Natural history of age-related lobular involution and impact on breast cancer risk. Breast Cancer Research and Treatment, 2016, 155, 423-430.	2.5	29
107	A Soft Microenvironment Protects from Failure of Midbody Abscission and Multinucleation Downstream of the EMT-Promoting Transcription Factor Snail. Cancer Research, 2018, 78, 2277-2289.	0.9	26
108	Lattice-Based Model of Ductal Carcinoma In Situ Suggests Rules for Breast Cancer Progression to an Invasive State. PLoS Computational Biology, 2014, 10, e1003997.	3.2	25

#	Article	IF	Citations
109	Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. Journal of Biological Chemistry, 2019, 294, 9476-9488.	3.4	25
110	PRSS3/Mesotrypsin and kallikrein-related peptidase 5 are associated with poor prognosis and contribute to tumor cell invasion and growth in lung adenocarcinoma. Scientific Reports, 2019, 9, 1844.	3.3	25
111	Association between mammographic breast density and histologic features of benign breast disease. Breast Cancer Research, 2017, 19, 134.	5.0	24
112	hVPS41 Is Expressed in Multiple Isoforms and Can Associate with Vesicles through a RING-H2 Finger Motif. Experimental Cell Research, 2001, 267, 126-134.	2.6	23
113	Trichostatin a inhibits ?-casein expression in mammary epithelial cells. Journal of Cellular Biochemistry, 2001, 83, 660-670.	2.6	23
114	Estrogen Receptor Expression in Atypical Hyperplasia: Lack of Association with Breast Cancer. Cancer Prevention Research, 2011, 4, 435-444.	1.5	23
115	Mammographic breast density and risk of breast cancer in women with atypical hyperplasia: an observational cohort study from the Mayo Clinic Benign Breast Disease (BBD) cohort. BMC Cancer, 2017, 17, 84.	2.6	23
116	Defining a role for the homeoprotein Six1 in EMT and mammary tumorigenesis. Journal of Clinical Investigation, 2009, 119, 2528-2531.	8.2	23
117	Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget, 2015, 6, 35737-35754.	1.8	23
118	Epimorphin acts to induce hair follicle anagen in C57BL/6 mice. FASEB Journal, 2003, 17, 2037-2047.	0.5	22
119	p16INK4a Expression and Breast Cancer Risk in Women with Atypical Hyperplasia. Cancer Prevention Research, 2011, 4, 1953-1960.	1.5	22
120	Model for Predicting Breast Cancer Risk in Women With Atypical Hyperplasia. Journal of Clinical Oncology, 2018, 36, 1840-1846.	1.6	22
121	A Dominant Allele of PDR1 Alters Transition Metal Resistance in Yeast. Journal of Biological Chemistry, 2003, 278, 1273-1280.	3.4	20
122	Lobular involution: localized phenomenon or field effect?. Breast Cancer Research and Treatment, 2009, 117, 193-196.	2.5	20
123	Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression. Oncotarget, 2015, 6, 22081-22097.	1.8	20
124	Proliferation and Polarity in Breast Cancer: Untying the Gordian Knot. Cell Cycle, 2005, 4, 646-649.	2.6	19
125	Malignant Mammary Cells Acquire Independence from Extracellular Context for Regulation of Estrogen Receptor α. Clinical Cancer Research, 2004, 10, 402s-409s.	7.0	19
126	An Integrated Model of the Transcriptome of HER2-Positive Breast Cancer. PLoS ONE, 2013, 8, e79298.	2.5	18

#	Article	IF	Citations
127	Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration. Oncotarget, 2014, 5, 5320-5334.	1.8	18
128	The importance of matrix metalloproteinase-3 in respiratory disorders. Expert Review of Respiratory Medicine, 2014, 8, 411-421.	2.5	17
129	Foxal is essential for mammary duct formation. Genesis, 2016, 54, 277-285.	1.6	17
130	Enhanced Antitumor Immunity via Endocrine Therapy Prevents Mammary Tumor Relapse and Increases Immune Checkpoint Blockade Sensitivity. Cancer Research, 2021, 81, 1375-1387.	0.9	17
131	ERÎ ² Expression and Breast Cancer Risk Prediction for Women with Atypias. Cancer Prevention Research, 2015, 8, 1084-1092.	1.5	16
132	Targeting an autocrine IL-6–SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene, 2020, 39, 6606-6618.	5.9	15
133	The exon 38-containing ARHGEF11 splice isoform is differentially expressed and is required for migration and growth in invasive breast cancer cells. Oncotarget, 2017, 8, 92157-92170.	1.8	15
134	Neuropilinâ€1 maintains dimethylarginine dimethylaminohydrolase 1 expression in endothelial cells, and contributes to protection from angiotensin Il–induced hypertension. FASEB Journal, 2019, 33, 494-500.	0.5	14
135	Ki-67 expression in sclerosing adenosis and adjacent normal breast terminal ductal lobular units: a nested case–control study from the Mayo Benign Breast Disease Cohort. Breast Cancer Research and Treatment, 2015, 151, 89-97.	2.5	13
136	Regulation of mechanical stress by mammary epithelial tissue structure controls breast cancer cell invasion. Oncotarget, 2013, 4, 498-499.	1.8	13
137	Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely related stromelysins MMP-3 and MMP-10. Journal of Biological Chemistry, 2022, 298, 101654.	3.4	13
138	CCAAT/enhancer binding protein beta (C/EBP \hat{l}^2) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells. Experimental Cell Research, 2014, 327, 146-155.	2.6	12
139	MYC Is a Crucial Mediator of TGFÎ ² -Induced Invasion in Basal Breast Cancer. Cancer Research, 2016, 76, 3520-3530.	0.9	12
140	Gene signature model for breast cancer risk prediction for women with sclerosing adenosis. Breast Cancer Research and Treatment, 2015, 152, 687-694.	2.5	11
141	Breast cancer risk by the extent and type of atypical hyperplasia. Cancer, 2016, 122, 3087-3088.	4.1	10
142	Breast Cancer Risk and Progressive Histology in Serial Benign Biopsies. Journal of the National Cancer Institute, 2017, 109, .	6.3	10
143	NanoString-based breast cancer risk prediction for women with sclerosing adenosis. Breast Cancer Research and Treatment, 2017, 166, 641-650.	2.5	10
144	Immune Responses and Risk of Triple-negative Breast Cancer: Implications for Higher Rates among African American Women. Cancer Prevention Research, 2020, 13, 901-910.	1.5	10

#	Article	IF	CITATIONS
145	Breast Cancer Risk and Use of Nonsteroidal Anti-inflammatory Agents After a Benign Breast Biopsy. Cancer Prevention Research, 2020, 13, 967-976.	1.5	9
146	Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biology, 2022, 111, 207-225.	3.6	9
147	Matrix degradation and cell proliferation are coupled to promote invasion and escape from an engineered human breast microtumor. Integrative Biology (United Kingdom), 2021, 13, 17-29.	1.3	8
148	Evaluation of 2 breast cancer risk models in a benign breast disease cohort. Cancer, 2018, 124, 3319-3328.	4.1	7
149	Fibroblasts act as co-conspirators for chemotherapy resistance. Cancer Biology and Therapy, 2008, 7, 1348-1349.	3.4	6
150	Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning. Npj Breast Cancer, 2022, 8, 13.	5.2	6
151	Lower Exome Sequencing Coverage of Ancestrally African Patients in The Cancer Genome Atlas. Journal of the National Cancer Institute, 2022, 114, 1192-1199.	6.3	6
152	Separation Anxiety: Detachment from the Extracellular Matrix Induces Metabolic Changes that Can Stimulate Tumorigenesis. Journal of Molecular Cell Biology, 2010, 2, 113-115.	3.3	5
153	Epimorphin Is a Novel Regulator of the Progesterone Receptor Isoform-A. Cancer Research, 2013, 73, 5719-5729.	0.9	5
154	CD56+ immune cell infiltration and MICA are decreased in breast lobules with fibrocystic changes. Breast Cancer Research and Treatment, 2018, 167, 649-658.	2.5	5
155	Extracellular localization of epimorphin/syntaxin-2. Blood, 2007, 110, 3082-3082.	1.4	4
156	Cytotoxic T cell depletion with increasing epithelial abnormality in women with benign breast disease. Breast Cancer Research and Treatment, 2020, 180, 55-61.	2.5	4
157	Activity-based protein profiling reveals active serine proteases that drive malignancy of human ovarian clear cell carcinoma. Journal of Biological Chemistry, 2022, 298, 102146.	3.4	4
158	Response: Extracellular localization of platelet SNARE proteins. Blood, 2007, 110, 3082-3083.	1.4	3
159	On the Role of the Microenvironment in Mammary Gland Development and Cancer. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013458-a013458.	5.5	3
160	Clinical Characteristics of Breast Cancers in African-American Women with Benign Breast Disease: A Comparison to the Surveillance, Epidemiology, and End Results Program. Breast Journal, 2014, 20, 571-577.	1.0	3
161	Identifying the Stroma as a Critical Player in Radiation-Induced Mammary Tumor Development. Cancer Cell, 2011, 19, 571-572.	16.8	2
162	Integrated strategy combining endobronchial ultrasound with positron emission tomography to diagnose peripheral pulmonary lesions. Thoracic Cancer, 2020, 11, 2094-2100.	1.9	2

#	Article	IF	Citations
163	Somatic mutations in benign breast disease tissues and association with breast cancer risk. BMC Medical Genomics, 2021, 14, 185.	1.5	2
164	Abstract 4682: Standardized measures of lobular involution and subsequent breast cancer risk among women with benign breast disease. , $2015, \dots$		2
165	Leading the charge. Nature Cell Biology, 2007, 9, 1341-1342.	10.3	1
166	Function following form. Cell Cycle, 2011, 10, 15-22.	2.6	1
167	Hyaline fibrous involution of breast lobules: a histologic finding associated with germline BRCA mutation. Modern Pathology, 2019, 32, 1263-1270.	5.5	1
168	Automated Quantitative Measures of Terminal Duct Lobular Unit Involution and Breast Cancer Risk—Letter. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 797-797.	2.5	1
169	Abstract 5069: Engineering TIMP-1 for selective MMP inhibition and future use as a protein therapeutic, 2013, , .		1
170	Abstract LB-111: Neuronal Pentraxin 2: a novel tumor-specific molecular target that mediates clear cell renal cell carcinoma malignancy. , 2014, , .		1
171	Abstract 2364: CD68+ immune cells show different infiltration patterns in tissue samples from women with no clinical breast disease and those who have benign breast disease. , 2015, , .		1
172	Abstract LB-272: AXL induces epithelial to mesenchymal transition and regulates the function of breast cancer stem cells , 2013 , , .		1
173	Towards defining morphologic parameters of normal parous and nulliparous breast tissues by artificial intelligence. Breast Cancer Research, 2022, 24, .	5.0	1
174	Postlactational involution biomarkers plasminogen and phospho-STAT3 are linked with active age-related lobular involution. Breast Cancer Research and Treatment, 2017, 166, 133-143.	2.5	0
175	Abstract 1497: Matrix metalloproteinase-9 mediates growth, invasion, and metastasis of human breast cancer cells., 2011,,.		0
176	Abstract 4774: Epimorphin inhibits mammary epithelial cell apoptosis through induction of IKBKE., 2011,,.		0
177	Abstract 4005: Active SHP2 mutant induces lung hyperproliferative lesions and adenoma in transgenic mice. , 2012, , .		0
178	The Immune System in Breast Cancer Initiation and Progression: Role of Epithelial to Mesenchymal Transition., 2013,, 43-64.		0
179	Abstract 155: Density of breast lobules in benign breast tissue and association with future breast cancer risk , 2013, , .		0
180	Abstract 1652: Immune infiltration of normal and benign breast lobules varies in breast tissues based on cancer risk. , 2014 , , .		0

#	Article	IF	CITATIONS
181	Abstract LB-95: Estrogen receptor mRNA-directed therapy for triple-negative breast cancer. , 2014, , .		0
182	Abstract P6-10-14: Association between mammographic breast density and histologic features of benign breast disease., 2015,,.		0
183	Abstract P6-10-06: Histologic features of benign breast biopsy tissue and association with ER positive and ER negative breast cancer in the Mayo BBD cohort study. , 2015 , , .		0
184	Abstract 2767: Investigation of the relationship between crown-like structures and adipose tissue hormone levels among postmenopausal women with breast cancer. , 2015, , .		0
185	Abstract 4459: Accelerated drug discovery platform yields synthesis of novel stearoyl-CoA desaturase 1 inhibitors that demonstrate anti-tumor efficacy in several models of aggressive cancer. , 2015, , .		0
186	Engineering Tissue Inhibitor of Metalloproteinasesâ€1 (TIMPâ€1) as a Selective Inhibitor of Matrix Metalloproteinaseâ€3 (MMPâ€3) for Therapeutic Targeting. FASEB Journal, 2018, 32, 798.7.	0.5	0
187	Structural Elucidation of Engineered Tissue Inhibitor of Metalloproteinasesâ€1 (TIMPâ€1) Variants with Improved Binding Affinity toward Matrix Metalloproteinaseâ€3 (MMPâ€3). FASEB Journal, 2019, 33, 467.2.	0.5	0
188	Serum hormone levels and normal breast histology among premenopausal women. Breast Cancer Research and Treatment, 2022, , .	2.5	0
189	Response to Mitr and Pollack. Journal of the National Cancer Institute, 0, , .	6.3	0