Xiuling Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3335024/publications.pdf Version: 2024-02-01

ХиниксТи

#	Article	IF	CITATIONS
1	Codelivery of Paclitaxel and Parthenolide in Discoidal Bicelles for a Synergistic Anticancer Effect: Structure Matters. Advanced NanoBiomed Research, 2022, 2, 2100080.	3.6	12
2	Stealth oxime ether lipid vesicles promote delivery of functional DsiRNA in human lung cancer A549 tumor bearing mouse xenografts. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102572.	3.3	3
3	Impact of Membranes on In Vitro Release Assessment: a Case Study Using Dexamethasone. AAPS PharmSciTech, 2021, 22, 42.	3.3	4
4	Stabilization and X-ray Attenuation of PEGylated Cholesterol/Polycaprolactone-Based Perfluorooctyl Bromide Nanocapsules for CT Imaging. AAPS PharmSciTech, 2021, 22, 90.	3.3	4
5	Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS Journal, 2021, 23, 43.	4.4	24
6	LC-MS/MS method for simultaneous quantification of dexamethasone and tobramycin in rabbit ocular biofluids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1170, 122610.	2.3	3
7	National Institute for Pharmaceutical Technology & Education (NIPTE) Research and Perspective: Advances in Nanotechnology-Based Drug Delivery. AAPS PharmSciTech, 2021, 22, 152.	3.3	1
8	Impact of formulation on the quality and stability of freeze-dried nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 256-267.	4.3	30
9	Influence of in vitro release methods on assessment of tobramycin ophthalmic ointments. International Journal of Pharmaceutics, 2020, 590, 119938.	5.2	4
10	Toward Long-Term Accurate and Continuous Monitoring of Nitrate in Wastewater Using Poly(tetrafluoroethylene) (PTFE)–Solid-State Ion-Selective Electrodes (S-ISEs). ACS Sensors, 2020, 5, 3182-3193.	7.8	39
11	Sublingual indocyanine green films for non-invasive swallowing assessment and inflammation detection through NIR/SWIR optical imaging. Scientific Reports, 2020, 10, 14003.	3.3	6
12	Tumor-mesoporous silica nanoparticle interactions following intraperitoneal delivery for targeting peritoneal metastasis. Journal of Controlled Release, 2020, 328, 846-858.	9.9	15
13	Advances and clinical challenges in biomaterials for in vivo tumor imaging. , 2020, , 291-329.		1
14	Overcoming Wnt–î²-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nature Cell Biology, 2020, 22, 689-700.	10.3	89
15	Influence of the method of preparation on the characteristics and performance of cholesterol-based polymeric nanoparticles for redox-triggered release of doxorubicin in tumor cells. International Journal of Pharmaceutics, 2019, 571, 118701.	5.2	5
16	Overcoming hypoxia-induced chemoresistance to cisplatin through tumor oxygenation monitored by optical imaging. Nanotheranostics, 2019, 3, 223-235.	5.2	28
17	Engineering Multifunctional Gold Decorated Dendritic Mesoporous Silica/Tantalum Oxide Nanoparticles for Intraperitoneal Tumor‧pecific Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900058.	2.3	6
18	Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for <i>in Vivo</i> Bioluminescence Kinetic Modeling through Noninvasive Imaging. ACS Applied Bio Materials, 2019, 2, 5608-5615.	4.6	15

XIULING LU

#	Article	IF	CITATIONS
19	Preparation, characterization and application of a protein hydrogel with rapid selfâ€healing and unique autofluoresent multiâ€functionalities. Journal of Biomedical Materials Research - Part A, 2019, 107, 81-91.	4.0	15
20	Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. International Journal of Pharmaceutics, 2019, 558, 177-186.	5.2	27
21	Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy. Antioxidants and Redox Signaling, 2019, 30, 747-761.	5.4	30
22	Nanoparticleâ€Mediated Inhibition of Acute Leukemic Stem Cells. FASEB Journal, 2019, 33, 674.13.	0.5	0
23	Impact of Porous Excipients on the Manufacturability and Product Performance of Solid Self-Emulsifying Drug Delivery Systems. AAPS PharmSciTech, 2018, 19, 3298-3310.	3.3	10
24	Influence of Manufacturing Process Variables on the Properties of Ophthalmic Ointments of Tobramycin. Pharmaceutical Research, 2018, 35, 179.	3.5	17
25	In-situ formation of holmium oxide in pores of Mesoporous Carbon Nanoparticles as substrates for neutron-activatable radiotherapeutics. Carbon, 2017, 117, 92-99.	10.3	19
26	Neutron-Activatable Nanoparticles for Intraperitoneal Radiation Therapy. Methods in Molecular Biology, 2017, 1530, 379-389.	0.9	3
27	Neutronâ€activatable needles for radionuclide therapy of solid tumors. Journal of Biomedical Materials Research - Part A, 2017, 105, 3273-3280.	4.0	0
28	ESC-derived thymic epithelial cells expressing MOG prevents EAE by central and peripheral tolerance mechanisms. Cellular Immunology, 2017, 322, 84-91.	3.0	11
29	Novel green and red autofluorescent protein nanoparticles for cell imaging and in vivo biodegradation imaging and modeling. RSC Advances, 2016, 6, 50091-50099.	3.6	12
30	Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1951-1959.	3.3	51
31	Recombinant <scp>IL</scp> â€7/ <scp>HGF</scp> β hybrid cytokine separates acute graftâ€versusâ€hostâ€disea from graftâ€versusâ€tumour activity by altering donor T cell trafficking. British Journal of Haematology, 2016, 175, 505-516.	ase 2.5	4
32	Protein Microspheres with Unique Green and Red Autofluorescence for Noninvasively Tracking and Modeling Their in Vivo Biodegradation. ACS Biomaterials Science and Engineering, 2016, 2, 954-962.	5.2	9
33	Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel. RSC Advances, 2016, 6, 56183-56192.	3.6	43
34	Reduced in vivo toxicity of doxorubicin by encapsulation in cholesterol-containing self-assembled nanoparticles. Pharmacological Research, 2016, 107, 93-101.	7.1	25
35	Fluorescent, Bioactive Protein Nanoparticles (Prodots) for Rapid, Improved Cellular Uptake. Bioconjugate Chemistry, 2015, 26, 396-404.	3.6	17
36	Elucidating organ-specific metabolic toxicity chemistry from electrochemiluminescent enzyme/DNA arrays and bioreactor bead-LC-MS/MS. Chemical Science, 2015, 6, 2457-2468.	7.4	30

XIULING LU

#	Article	IF	CITATIONS
37	Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 2071-2082.	3.3	28
38	Chemoresistant Leukemia-Initiating Cell Expansion Is Inhibited By Targeting Oncogenic Self-Renewal. Blood, 2015, 126, 1860-1860.	1.4	2
39	Long Circulating Self-Assembled Nanoparticles from Cholesterol-Containing Brush-Like Block Copolymers for Improved Drug Delivery to Tumors. Biomacromolecules, 2014, 15, 4363-4375.	5.4	68
40	Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery. AAPS PharmSciTech, 2014, 15, 762-771.	3.3	64
41	Self-assembled nanoparticles from thiol functionalized liquid crystalline brush block copolymers for dual encapsulation of doxorubicin and gold nanoparticles. Polymer Chemistry, 2014, 5, 2774-2783.	3.9	34
42	Quercetin-Containing Self-Nanoemulsifying Drug Delivery System for Improving Oral Bioavailability. Journal of Pharmaceutical Sciences, 2014, 103, 840-852.	3.3	145
43	Neutron-Activatable Holmium-Containing Mesoporous Silica Nanoparticles as a Potential Radionuclide Therapeutic Agent for Ovarian Cancer. Journal of Nuclear Medicine, 2013, 54, 111-116.	5.0	66
44	Tumor accumulation of neutron-activatable holmium-containing mesoporous silica nanoparticles in an orthotopic non-small cell lung cancer mouse model. Inorganica Chimica Acta, 2012, 393, 334-336.	2.4	21
45	Carboxylesterase-Triggered Hydrolysis of Nanoparticle PEGylating Agents. Langmuir, 2012, 28, 12030-12037.	3.5	9
46	Optimization of the lyophilization process for long-term stability of solid–lipid nanoparticles. Drug Development and Industrial Pharmacy, 2012, 38, 1270-1279.	2.0	40
47	Preparation of Neutronâ€Activatable Holmium Nanoparticles for the Treatment of Ovarian Cancer Metastases. Small, 2012, 8, 997-1000.	10.0	17
48	High Payload Dual Therapeuticâ€Imaging Nanocarriers for Triggered Tumor Delivery. Small, 2012, 8, 2895-2903.	10.0	13
49	Physicochemical Characterization of Nanotemplate Engineered Solid Lipid Nanoparticles. Langmuir, 2011, 27, 1964-1971.	3.5	17
50	Uniformity of Drug Payload and Its Effect on Stability of Solid Lipid Nanoparticles Containing an Ester Prodrug. ACS Nano, 2011, 5, 209-216.	14.6	24
51	Solid Phase Pegylation of Hemoglobin. Artificial Cells, Blood Substitutes, and Biotechnology, 2009, 37, 147-155.	0.9	13
52	Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants II: Role of Plasma Esterases in Drug Release. AAPS Journal, 2009, 11, 120-122.	4.4	26
53	Solid Lipid Nanoparticles for Topical Administration of <l>Kaempferia Parviflora</l> Extracts. Journal of Biomedical Nanotechnology, 2009, 5, 224-232.	1.1	37
54	Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants: Optimization and In Vitro Characterization. AAPS Journal, 2008, 10, 133-140.	4.4	37

XIULING LU

#	Article	IF	CITATIONS
55	PEGylation of Nanocarrier Drug Delivery Systems: State of the Art. Journal of Biomedical Nanotechnology, 2008, 4, 133-148.	1.1	169
56	Nanotemplate-Engineered Nanoparticles Containing Gadolinium for Magnetic Resonance Imaging of Tumors. Investigative Radiology, 2008, 43, 129-140.	6.2	19
57	Polyethylene glycol increases purification and recovery, alters retention behavior in flow-through chromatography of hemoglobin. Journal of Chromatography A, 2004, 1059, 233-237.	3.7	25
58	Purification of Hemoglobin by Ion Exchange Chromatography in Flow-Through Mode with PEG as an Escort. Artificial Cells, Blood Substitutes, and Biotechnology, 2004, 32, 209-227.	0.9	20
59	Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using Perfluorooctyl Bromide Nanocapsule Xâ€ray Computed Tomography Contrast. Advanced Therapeutics, 0, , 2200047.	3.2	1