Gerald Krystal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3334921/publications.pdf

Version: 2024-02-01

		34105	4	42399
137	9,142	52		92
papers	citations	h-index		g-index
138	138	138		7790
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncolmmunology, 2022, 11, 2010905.	4.6	12
2	A low-carbohydrate diet containing soy protein and fish oil reduces breast but not prostate cancer in C3(1)/Tag mice. Carcinogenesis, 2022, 43, 115-125.	2.8	4
3	The Pros and Cons of Low Carbohydrate and Ketogenic Diets in the Prevention and Treatment of Cancer. Frontiers in Nutrition, 2021, 8, 634845.	3.7	4
4	Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell Subsets in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Cancer Discovery, 2020, 10, 406-421.	9.4	155
5	Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. IScience, 2020, 23, 101433.	4.1	20
6	The effect of smoking on chronic inflammation, immune function and blood cell composition. Scientific Reports, 2020, 10, 19480.	3.3	78
7	Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers, 2020, 12, 3631.	3.7	23
8	Low carbohydrate diets containing soy protein and fish oil slow the growth of established NNK-induced lung tumors. Carcinogenesis, 2020, 41, 1083-1093.	2.8	5
9	Exploratory examination of inflammation state, immune response and blood cell composition in a human obese cohort to identify potential markers predicting cancer risk. PLoS ONE, 2020, 15, e0228633.	2.5	28
10	Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. , 2019, 7, 172.		26
11	The effect of diet and exercise on tobacco carcinogen-induced lung cancer. Carcinogenesis, 2019, 40, 448-460.	2.8	21
12	UV Light–inactivated HSV-1 Stimulates Natural Killer Cell–induced Killing of Prostate Cancer Cells. Journal of Immunotherapy, 2019, 42, 162-174.	2.4	5
13	Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. Journal of Immunological Methods, 2018, 452, 26-31.	1.4	33
14	Effect of age on chronic inflammation and responsiveness to bacterial and viral challenges. PLoS ONE, 2017, 12, e0188881.	2.5	26
15	DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS ONE, 2016, 11, e0152538.	2.5	65
16	All Trans Retinoic Acid, Transforming Growth Factor \hat{l}^2 and Prostaglandin E2 in Mouse Plasma Synergize with Basophil-Secreted Interleukin-4 to M2 Polarize Murine Macrophages. PLoS ONE, 2016, 11, e0168072.	2.5	20
17	UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. Blood, 2016, 127, 2575-2586.	1.4	28
18	SHIP prevents metastasis. Aging, 2016, 8, 837-838.	3.1	3

#	Article	IF	Citations
19	SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice. Oncotarget, 2016, 7, 3677-3691.	1.8	12
20	Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport. Oncotarget, 2016, 7, 51435-51449.	1.8	33
21	A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 35-45.	2.5	22
22	DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. FASEB Journal, 2015, 29, LB282.	0.5	1
23	Macrophages Are More Potent Immune Suppressors Ex Vivo Than Immature Myeloid-Derived Suppressor Cells Induced by Metastatic Murine Mammary Carcinomas. Journal of Immunology, 2014, 192, 512-522.	0.8	35
24	A low carbohydrate, high protein diet combined with celecoxib markedly reduces metastasis. Carcinogenesis, 2014, 35, 2291-2299.	2.8	16
25	Ly49Q Positively Regulates Type I IFN Production by Plasmacytoid Dendritic Cells in an Immunoreceptor Tyrosine–Based Inhibitory Motif–Dependent Manner. Journal of Immunology, 2013, 190, 3994-4004.	0.8	15
26	The Role of SHIP in the Development and Activation of Mouse Mucosal and Connective Tissue Mast Cells. Journal of Immunology, 2012, 188, 3839-3850.	0.8	17
27	Synthesis of SHIP1â€Activating Analogs of the Sponge Meroterpenoid Pelorol. European Journal of Organic Chemistry, 2012, 2012, 5195-5207.	2.4	35
28	Serum inhibits the immunosuppressive function of myeloid-derived suppressor cells isolated from 4T1 tumor-bearing mice. Cancer Immunology, Immunotherapy, 2012, 61, 643-654.	4.2	13
29	CIN85 Interacting Proteins in B Cells-Specific Role for SHIP-1. Molecular and Cellular Proteomics, 2011, 10, M110.006239.	3.8	24
30	SHIP and Tumour-Associated Macrophages. , 2011, , 135-151.		0
31	SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism. PLoS ONE, 2011, 6, e21893.	2.5	7
32	The PI3K pathway drives the maturation of mast cells via microphthalmia transcription factor. Blood, 2011, 118, 3459-3469.	1.4	26
33	Role of SHIP in cancer. Experimental Hematology, 2011, 39, 2-13.	0.4	59
34	Activation of the PI3K pathway increases TLR-induced TNF- \hat{l}_{\pm} and IL-6 but reduces IL- $1\hat{l}_{\pm}^2$ production in mast cells. Cellular Signalling, 2011, 23, 866-875.	3.6	52
35	SHIP Represses Th2 Skewing by Inhibiting IL-4 Production from Basophils. Journal of Immunology, 2011, 186, 323-332.	0.8	27
36	Myeloid Suppressor Cells Regulate the Lung Environmentâ€"Letter. Cancer Research, 2011, 71, 5050-5051.	0.9	9

#	Article	IF	CITATIONS
37	MyD88-Dependent SHIP1 Regulates Proinflammatory Signaling Pathways in Dendritic Cells after Monophosphoryl Lipid A Stimulation of TLR4. Journal of Immunology, 2011, 186, 3858-3865.	0.8	35
38	A Low Carbohydrate, High Protein Diet Slows Tumor Growth and Prevents Cancer Initiation. Cancer Research, 2011, 71, 4484-4493.	0.9	110
39	Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Experimental Hematology, 2010, 38, 392-402.e1.	0.4	38
40	The Src Homology 2 Containing Inositol 5′ Phosphatases. , 2010, , 1065-1083.		2
41	Absence of SHIP-1 Results in Constitutive Phosphorylation of Tank-Binding Kinase 1 and Enhanced TLR3-Dependent IFN-Î ² Production. Journal of Immunology, 2010, 184, 2314-2320.	0.8	72
42	TLR Agonists That Induce IFN- \hat{l}^2 Abrogate Resident Macrophage Suppression of T Cells. Journal of Immunology, 2010, 185, 4545-4553.	0.8	17
43	Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15443-15448.	7.1	154
44	SHIP Is Required for Dendritic Cell Maturation. Journal of Immunology, 2010, 184, 2805-2813.	0.8	38
45	SHIP negatively regulates Flt3L-derived dendritic cell generation and positively regulates MyD88-independent TLR-induced maturation. Journal of Leukocyte Biology, 2010, 88, 925-935.	3.3	16
46	Arginase and YKL-40, Effectors of Immunosuppressive Myeloid Cells, Are Over-Expressed In the Bone Marrow of Most Chronic Myelomonocytic Leukemia Patients, and Are Potential Prognostic Biomarkers In Myelodysplastic Syndrome. Blood, 2010, 116, 1855-1855.	1.4	0
47	Steel Factor Enhances Supraoptimal Antigen-Induced IL-6 Production from Mast Cells via Activation of Protein Kinase C- \hat{l}^2 . Journal of Immunology, 2009, 182, 7897-7905.	0.8	21
48	SHIP Regulates the Reciprocal Development of T Regulatory and Th17 Cells. Journal of Immunology, 2009, 183, 975-983.	0.8	67
49	SHIP1 Is a Repressor of Mast Cell Hyperplasia, Cytokine Production, and Allergic Inflammation In Vivo. Journal of Immunology, 2009, 183, 228-236.	0.8	54
50	SHIP Represses the Generation of IL-3-Induced M2 Macrophages by Inhibiting IL-4 Production from Basophils. Journal of Immunology, 2009, 183, 3652-3660.	0.8	103
51	Activation of SHIP via a small molecule agonist kills multiple myeloma cells. Experimental Hematology, 2009, 37, 1274-1283.	0.4	32
52	SHIP prevents lipopolysaccharide from triggering an antiviral response in mice. Blood, 2009, 113, 2945-2954.	1.4	42
53	Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. Blood, 2009, 114, 3983-3993.	1.4	69
54	Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. Experimental Hematology, 2008, 36, 845-859.	0.4	56

#	Article	IF	Citations
55	Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology, 2008, 54, 1-7.	4.1	253
56	The Inositol Phosphatase SHIP Controls <i>Salmonella enterica</i> Serovar Typhimurium Infection In Vivo. Infection and Immunity, 2008, 76, 2913-2922.	2.2	19
57	lgE-Induced Mast Cell Survival Requires the Prolonged Generation of Reactive Oxygen Species. Journal of Immunology, 2008, 181, 3850-3860.	0.8	35
58	Heterogeneity of Acute Myeloid Leukemia at the Stem Cell Level Blood, 2008, 112, 1355-1355.	1.4	0
59	Comprehensive Profiling of Micrornas in Murine Hematopoietic Stem Cells and Lineages Using a Microfluidics Approach. Blood, 2008, 112, 2468-2468.	1.4	1
60	Monocyte p $110\hat{1}\pm$ phosphatidylinositol 3-kinase regulates phagocytosis, the phagocyte oxidase, and cytokine production. Journal of Leukocyte Biology, 2007, 81, 1548-1561.	3.3	48
61	Re: The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 3986-3986.	0.9	10
62	Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood, 2007, 110, 1942-1949.	1.4	133
63	FcÎ ³ RIII-Dependent Inhibition of Interferon-Î ³ Responses Mediates Suppressive Effects of Intravenous Immune Globulin. Immunity, 2007, 26, 67-78.	14.3	147
64	Stimulation of mast cells via FcÉ $_2$ R1 and TLR2: The type of ligand determines the outcome. Molecular Immunology, 2007, 44, 2087-2094.	2.2	41
65	The role of SHIP in macrophages. Frontiers in Bioscience - Landmark, 2007, 12, 2836.	3.0	55
66	The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. Blood, 2006, 108, 1030-1036.	1.4	55
67	Insulin and insulin-like growth factor-1 promote mast cell survival via activation of the phosphatidylinositol-3-kinase pathway. Experimental Hematology, 2006, 34, 1532-1541.	0.4	31
68	SHIP1 Negatively Regulates Proliferation of Osteoclast Precursors via Akt-Dependent Alterations in D-Type Cyclins and p27. Journal of Immunology, 2006, 177, 8777-8784.	0.8	53
69	SHIP Down-Regulates FclµR1-Induced Degranulation at Supraoptimal IgE or Antigen Levels. Journal of Immunology, 2005, 174, 507-516.	0.8	101
70	Synthesis of Pelorol and Analogues:  Activators of the Inositol 5-Phosphatase SHIP. Organic Letters, 2005, 7, 1073-1076.	4.6	66
71	SHIP Represses the Generation of Alternatively Activated Macrophages. Immunity, 2005, 23, 361-374.	14.3	271
72	LPS-Induced Upregulation of SHIP Is Essential for Endotoxin Tolerance. Immunity, 2004, 21, 227-239.	14.3	281

#	Article	IF	Citations
73	Dysregulated FcεRI Signaling and Altered Fyn and SHIP Activities in Lyn-Deficient Mast Cells. Journal of Immunology, 2004, 173, 100-112.	0.8	120
74	IgE-induced signaling: only the weak survive. Blood, 2004, 103, 2868-2869.	1.4	0
75	The role of SHIP1 in macrophage programming and activation. Biochemical Society Transactions, 2004, 32, 785-788.	3.4	64
76	Ship Is Essential for Both Endotoxin- and CpG-Induced Tolerance and for Their Cross-Tolerance Blood, 2004, 104, 3440-3440.	1.4	0
77	The SCL Transcription Factor Supports Erythroid Cell Survival and Differentiation Downstream of the Erythropoietin Receptor Blood, 2004, 104, 818-818.	1.4	0
78	Ship Represses the PI3-Kinase-Mediated Skewing of Myeloid Cell Development towards Alternative (M-2) Macrophages Blood, 2004, 104, 777-777.	1.4	0
79	SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Experimental Hematology, 2003, 31, 1170-1181.	0.4	94
80	The Inositol 5′-Phosphatase SHIP-1 and the Src Kinase Lyn Negatively Regulate Macrophage Colony-stimulating Factor-induced Akt Activity. Journal of Biological Chemistry, 2003, 278, 38628-38636.	3.4	89
81	lgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE + antigen but distinct from those used by Steel factor. Blood, 2003, 102, 1405-1413.	1.4	80
82	Evidence for a positive role of SHIP in the BCR-ABL–mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood, 2003, 102, 2976-2984.	1.4	42
83	Role of Src homology 2-containing-inositol 5′-phosphatase (SHIP) in mast cells and macrophages. Biochemical Society Transactions, 2003, 31, 286-291.	3.4	60
84	Phosphatidylinositol (3,4,5)P3 Is Essential but Not Sufficient for Protein Kinase B (PKB) Activation; Phosphatidylinositol (3,4)P2 Is Required for PKB Phosphorylation at Ser-473. Journal of Biological Chemistry, 2002, 277, 9027-9035.	3.4	145
85	SHIP Negatively Regulates IgE + Antigen-Induced IL-6 Production in Mast Cells by Inhibiting NF-κB Activity. Journal of Immunology, 2002, 168, 4737-4746.	0.8	128
86	Protein Kinase C-δ Is a Negative Regulator of Antigen-Induced Mast Cell Degranulation. Molecular and Cellular Biology, 2002, 22, 3970-3980.	2.3	127
87	SHIP represses mast cell activation and reveals that IgE alone triggers signaling pathways which enhance normal mast cell survival. Molecular Immunology, 2002, 38, 1201-1206.	2.2	38
88	Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nature Cell Biology, 2002, 4, 963-969.	10.3	153
89	SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Medicine, 2002, 8, 943-949.	30.7	237
90	The role of SHIP in mast cell degranulation and IgE-induced mast cell survival. Immunology Letters, 2002, 82, 17-21.	2.5	38

#	Article	IF	CITATIONS
91	Monomeric IgE Stimulates Signaling Pathways in Mast Cells that Lead to Cytokine Production and Cell Survival. Immunity, 2001, 14, 801-811.	14.3	387
92	SHIP's C-terminus is essential for its hydrolysis of PIP3 and inhibition of mast cell degranulation. Blood, 2001, 97, 1343-1351.	1.4	61
93	Another SHIP on the horizon. Blood, 2001, 98, 2000-2000.	1.4	0
94	Src Homology 2 Domain-containing Inositol 5-Phosphatase 1 Mediates Cell Cycle Arrest by Fcî ³ RIIB. Journal of Biological Chemistry, 2001, 276, 30381-30391.	3.4	27
95	A Dual Role for Src Homology 2 Domain–Containing Inositol-5-Phosphatase (Ship) in Immunity. Journal of Experimental Medicine, 2000, 191, 781-794.	8.5	146
96	Thapsigargin-Induced Degranulation of Mast Cells Is Dependent on Transient Activation of Phosphatidylinositol-3 Kinase. Journal of Immunology, 2000, 165, 124-133.	0.8	56
97	Lipid phosphatases in the immune system. Seminars in Immunology, 2000, 12, 397-403.	5.6	125
98	Engagement of Gab1 and Gab2 in Erythropoietin Signaling. Journal of Biological Chemistry, 1999, 274, 24469-24474.	3.4	88
99	The role of SHIP in growth factor induced signalling. Progress in Biophysics and Molecular Biology, 1999, 71, 423-434.	2.9	51
100	Ships ahoy. International Journal of Biochemistry and Cell Biology, 1999, 31, 1007-1010.	2.8	42
101	Altered responsiveness to chemokines due to targeted disruption of SHIP. Journal of Clinical Investigation, 1999, 104, 1751-1759.	8.2	94
102	Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO Journal, 1998, 17, 7311-7319.	7.8	137
103	Induction of sensitivity to NK-mediated cytotoxicity by TNF- \hat{l}_{\pm} treatment: possible role of ICAM-3 and CD44. Leukemia, 1998, 12, 1565-1572.	7.2	25
104	BCR – ABL accelerates C2-ceramide-induced apoptosis. Oncogene, 1998, 16, 237-248.	5.9	46
105	Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. European Journal of Immunology, 1998, 28, 264-276.	2.9	215
106	Targeted disruption of <i>SHIP</i> leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes and Development, 1998, 12, 1610-1620.	5.9	528
107	The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11330-11335.	7.1	320
108	The Hyperresponsiveness of Cells Expressing Truncated Erythropoietin Receptors Is Contingent on Insulin-Like Growth Factor-1 in Fetal Calf Serum. Blood, 1998, 92, 425-433.	1.4	26

#	Article	IF	CITATIONS
109	Multiple Forms of the SH2-Containing Inositol Phosphatase, SHIP, Are Generated by C-Terminal Truncation. Blood, 1998, 92, 1199-1205.	1.4	60
110	The Hyperresponsiveness of Cells Expressing Truncated Erythropoietin Receptors Is Contingent on Insulin-Like Growth Factor-1 in Fetal Calf Serum. Blood, 1998, 92, 425-433.	1.4	1
111	Multiple Forms of the SH2-Containing Inositol Phosphatase, SHIP, Are Generated by C-Terminal Truncation. Blood, 1998, 92, 1199-1205.	1.4	5
112	The Src Homology 2 (SH2) Domain of SH2-containing Inositol Phosphatase (SHIP) Is Essential for Tyrosine Phosphorylation of SHIP, Its Association with Shc, and Its Induction of Apoptosis. Journal of Biological Chemistry, 1997, 272, 8983-8988.	3.4	116
113	Shc Interaction with Src Homology 2 Domain Containing Inositol Phosphatase (SHIP) in VivoRequires the Shc-Phosphotyrosine Binding Domain and Two Specific Phosphotyrosines on SHIP. Journal of Biological Chemistry, 1997, 272, 10396-10401.	3.4	110
114	A Possible Involvement of Stat5 in Erythropoietin-Induced Hemoglobin Synthesis. Biochemical and Biophysical Research Communications, 1997, 234, 198-205.	2.1	33
115	Interleukin-3 Induces the Association of the Inositol 5-Phosphatase SHIP with SHP2. Journal of Biological Chemistry, 1997, 272, 10998-11001.	3.4	69
116	SHIP, a new player in cytokine-induced signalling. Leukemia, 1997, 11, 181-184.	7.2	52
117	Differential association of phosphatases with hematopoietic co-receptors bearing immunoreceptor tyrosine-based inhibition motifs. European Journal of Immunology, 1997, 27, 1994-2000.	2.9	133
118	Cardiac hypertrophy in the Dahl rat is associated with increased tyrosine phosphorylation of several cytosolic proteins, including a 120 kDa protein. American Journal of Hypertension, 1996, 9, 230-236.	2.0	7
119	Erythropoietin therapy in neonates at risk of having bronchopulmonary dysplasia and requiring multiple transfusions. Journal of Pediatrics, 1996, 129, 89-96.	1.8	34
120	A Novel Phosphatidylinositol-3,4,5-trisphosphate 5-Phosphatase Associates with the Interleukin-3 Receptor. Journal of Biological Chemistry, 1996, 271, 29729-29733.	3.4	19
121	The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1689-1693.	7.1	586
122	Interleukin-3 (IL-3) Inhibits Erythropoietin-induced Differentiation in Ba/F3 Cells via the IL-3 Receptor α Subunit. Journal of Biological Chemistry, 1996, 271, 27432-27437.	3.4	20
123	Regulation of Phosphatidylinositol 3,4,5-Trisphosphate 5′-Phosphatase Activity by Insulin. Journal of Biological Chemistry, 1996, 271, 29533-29536.	3.4	29
124	Phosphorylation of Tyrosine 503 in the Erythropoietin Receptor (EpR) Is Essential for Binding the P85 Subunit of Phosphatidylinositol (PI) 3-Kinase and for EpR-associated PI 3-Kinase Activity. Journal of Biological Chemistry, 1995, 270, 23402-23408.	3.4	134
125	Identification and Characterization of an Interleukin-3 Receptor-associated 110-kDa Serine/Threonine Kinase. Journal of Biological Chemistry, 1995, 270, 22422-22427.	3.4	5
126	Transforming growth factor beta 1 is an inducer of erythroid differentiation Journal of Experimental Medicine, 1994, 180, 851-860.	8.5	91

#	Article	IF	CITATIONS
127	Erythropoiesis after withdrawal of enalapril in post-transplant erythrocytosis. Kidney International, 1994, 46, 1397-1403.	5.2	43
128	Ligand-induced phosphorylation of the murine interleukin 3 receptor signals its cleavage Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10812-10816.	7.1	28
129	Receptors for toxic shock syndrome toxin-1 and staphylococcal enterotoxin A on human blood monocytes. Canadian Journal of Microbiology, 1992, 38, 937-944.	1.7	15
130	A silver-binding assay for measuring nanogram amounts of protein in solution. Analytical Biochemistry, 1987, 167, 86-96.	2.4	40
131	A method for quantitating nanogram amounts of soluble protein using the principle of silver binding. Analytical Biochemistry, 1985, 148, 451-460.	2.4	41
132	CM Affi-Gel Blue chromatography of human urine: a simple one-step procedure for obtaining erythropoietin suitable for in vitro erythropoietic progenitor assays. British Journal of Haematology, 1984, 58, 533-546.	2.5	19
133	The purification of rubella virus (RV) and determination of its polypeptide composition. Virology, 1981, 108, 491-498.	2.4	20
134	A sensitive method for estimating the carbohydrate content of glycoproteins. Analytical Biochemistry, 1976, 70, 336-345.	2.4	32
135	Evidence for phosphoproteins in reovirus. Virology, 1975, 64, 505-512.	2.4	41
136	The Partial Purification and Properties of Uridine Kinase from Ehrlich Ascites Tumor Cells. Canadian Journal of Biochemistry, 1973, 51, 379-389.	1.4	34
137	Multiple forms of uridine kinase in normal and neoplastic rat liver. Biochemical Journal, 1971, 124, 943-947.	3.1	51